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1. Introduction and summary

It has become clear in recent years that a proper description of the nonperturbative vacuum

in string theory will require detailed understanding of the properties of systems of both BPS

and non-BPS brane configurations (see [1] for a recent review). The basic non-BPS system

is the unstable brane-antibrane configuration which corresponds to a pair of vector bundles

with a tachyon field mapping between them. The dynamics of this system can be cast as

a Yang-Mills theory of superconnections [2]. In some instances the branes can be realized

as instantons of gauge theory in the appropriate dimensionality [3]. Important examples
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of this are noncommutative solitons and instantons which find their most natural physical

interpretations in terms of D-branes [4]. This is related [5] to the fact that the charges

of D-branes are classified by K-theory [6]. Reviews on noncommutative solitons and D-

branes can be found in [7], while applications of BPS soliton solutions in noncommutative

(supersymmetric) Yang-Mills theory to D-brane dynamics are given e.g. in [8].

One way to generate both stable and unstable states of D-branes is by placing them

at singularities of orbifolds [9, 10]. Regular representation D-branes then decay into ir-

reducible representation fractional branes under the action of the discrete orbifold group.

The low-energy dynamics of the D-brane decay is succinctly described by a quiver gauge

theory. Resolving orbifold singularities by non-contractible cycles blows up the fractional

D-branes into higher dimensional branes wrapping the cycles. Another way of obtaining

quiver gauge theories on a q-dimensional manifold M is to consider k coincident D(q+r)-

branes wrapping the worldvolume manifold X = M×G/H where G/H is an r-dimensional

homogeneous space for a Lie group G with a closed subgroup H. In the standard interpre-

tation this system of D-branes corresponds to a rank k hermitean vector bundle E over X

with a connection whose dynamics are governed by Yang-Mills gauge theory. For Kähler

manifolds X the stability of such bundles (BPS conditions) is controlled by the Donaldson-

Uhlenbeck-Yau (DUY) equations [11]. For G-equivariant bundles E → X one finds that

Yang-Mills theory on X reduces to a quiver gauge theory on M [12]–[15].

In this paper we will focus on some of these issues in quiver gauge theories on Kähler

manifolds M which arise via a quotient by the natural action of the Lie group SU(2)×SU(2)

on equivariant Chan-Paton bundles over M×CP 1×CP 1. Our analysis generalizes previous

work on brane-antibrane systems from reduction on M×CP 1 [12, 16, 17], and on the gen-

eralization to chains of branes and antibranes arising from SU(2)-equivariant dimensional

reduction on M×CP 1 [13, 18]. In particular, we will expand on the formalism introduced

in [18] which merged the low-energy dynamics of brane-antibrane chains with quiver gauge

theory into a Yang-Mills gauge theory of new objects on M termed “graded connections”,

which generalize the usual superconnections on the worldvolumes of coincident brane-

antibrane pairs. This formalism is particularly well-suited to describe such physical in-

stances and their novel effects, such as the equivalence between non-abelian quiver vortices

on M and symmetric multi-instantons on the higher-dimensional space M×CP 1×CP 1.

Moreover, when M is the noncommutative space R2n
θ , it enables one to interpret non-

commutative quiver solitons in the present case as states of D-branes in a straightforward

manner, whilst providing a categorical approach to D-branes which characterizes their

moduli beyond their K-theory charges. These quiver brane configurations require a more

complex description than just that in terms of branes and antibranes, and we construct a

category of D-branes which incorporates both their locations and their bindings to abelian

magnetic monopoles.

The essential new ingredients of the present paper are that our quivers are of rank

two, as opposed to the rank one quivers considered in [18], and the necessity of imposing

relations on the quiver. The resulting quiver D-brane configuration is new, and comprises

a two-dimensional lattice of branes and antibranes coupled to U(1)×U(1) Dirac monopole

fields with interesting dynamics formulated through a higher-rank gauge theory of graded
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connections. We will also elaborate further on some of the constructions introduced in [18].

The outline of this paper is as follows. In section 2 we describe general features of the

SU(2)×SU(2)-equivariant reduction of gauge theories on M×CP 1×CP 1 to an arbitrary

Kähler manifold M , including the special case of the noncommutative euclidean space

M = R2n
θ . In section 3 we describe various features of the induced quiver gauge theory on

M and develop the associated formalism of graded connections in this case. In section 4 we

analyse the general structure of quiver gauge theory on M and the quiver vortex equations

which describe the BPS sector. We then construct both BPS and non-BPS solutions of

the Yang-Mills equations on the noncommutative space R2n
θ ×CP 1×CP 1, describe their

induced quiver representations, and analyse in detail the structure of the moduli space of

noncommutative instantons. Finally, in section 5 we realize our noncommutative instantons

as configurations of D-branes by computing their topological charges, by computing their

K-theory charges through a noncommutative equivariant version of the ABS construction,

and by realizing them as objects in the category of quiver representations using some

techniques of homological algebra.

2. Equivariant gauge theory

In this section we will analyse some aspects of SU(2)×SU(2)-equivariant gauge theory on

spaces of the form M×CP 1×CP 1, where M is a Kähler manifold. After some prelimi-

nary definitions, we describe the equivariant decomposition of generic gauge bundles over

M×CP 1×CP 1, and of their connections and curvatures. We then write down the corre-

sponding Yang-Mills action functional and explain the generalization to noncommutative

gauge theory. Equivariant dimensional reduction is described in general in [14], while

general aspects of noncommutative field theories are reviewed in [19].

2.1 The Kähler manifold M×CP 1×CP 1

Let M be a Kähler manifold of real dimension 2n with local real coordinates x = (xµ) ∈
R2n, where the indices µ, ν, . . . run through 1, . . . , 2n. Let S2

(`)
∼= CP 1

(`), ` = 1, 2, be

two copies of the standard two-sphere of constant radii R` with coordinates ϑ` ∈ [0, π]

and ϕ` ∈ [0, 2π]. We shall consider the product M×CP 1
(1)×CP 1

(2) which is also a Kähler

manifold with local complex coordinates (z1, . . . , zn, y1, y2) ∈ Cn+2 and their complex

conjugates, where

za = x2a−1 − i x2a and z̄ā = x2a−1 + i x2a with a = 1, . . . , n (2.1)

while

y` =
sinϑ`

1 + cosϑ`
exp (− iϕ`) and ȳ` =

sinϑ`
1 + cosϑ`

exp ( iϕ`) with ` = 1, 2 .

(2.2)

In these coordinates the riemannian metric

ds2 = gµ̂ν̂ dxµ̂ dxν̂ (2.3)

– 3 –
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on M×CP 1
(1)×CP 1

(2) takes the form

ds2 = gµν dxµ dxν +R2
1

(
dϑ2

1 + sin2 ϑ1 dϕ2
1

)
+R2

2

(
dϑ2

2 + sin2 ϑ2 dϕ2
2

)

= 2 gab̄ dza dz̄b̄ +
4R2

1

(1 + y1ȳ1)2 dy1 dȳ1 +
4R2

2

(1 + y2ȳ2)2 dy2 dȳ2 , (2.4)

where hatted indices µ̂, ν̂, . . . run over 1, . . . , 2n+ 4. The Kähler two-form Ω is given by

Ω = 1
2 ωµν dxµ ∧ dxν +R2

1 sinϑ1 dϑ1 ∧ dϕ1 +R2
2 sinϑ2 dϑ2 ∧ dϕ2

= −2 i gab̄ dza ∧ dz̄b̄ − 4 iR2
1

(1 + y1ȳ1)2 dy1 ∧ dȳ1 −
4 iR2

2

(1 + y2ȳ2)2 dy2 ∧ dȳ2 . (2.5)

2.2 Equivariant vector bundles

Let E →M×CP 1
(1)×CP 1

(2) be a hermitean vector bundle of rank k. We wish to impose the

condition of G-equivariance on this bundle with the group G := SU(2)×SU(2) of rank 2

acting trivially on M and in the standard way on the homogeneous space CP 1×CP 1 ∼=
G/H, where H := U(1)×U(1) is a maximal torus of G. This means that we should

look for representations of the group G inside the U(k) structure group of the bundle E ,

i.e. for k-dimensional unitary representations of G. For every pair of positive integers ki
and kα, up to isomorphism there are unique irreducible SU(2)-modules V ki and V kα of

dimensions ki and kα, respectively, and consequently a unique irreducible representation

V kiα := V ki ⊗ V kα of G with dimension kiα := ki kα. Thus, for each pair of positive

integers m1 and m2, the module

V =

m1⊕

i=0

m2⊕

α=0

V kiα with V kiα
∼= Ckiα and

m1∑

i=0

m2∑

α=0

kiα = k (2.6)

gives a representation of SU(2)×SU(2) inside U(k). The structure group of the bundle E
is correspondingly broken as

U(k) −→
m1∏

i=0

m2∏

α=0

U(kiα) . (2.7)

As a result, we must construct bundles E → M×CP 1
(1)×CP 1

(2) whose typical fibres V are

complex vector spaces with a direct sum decomposition as in (2.6). We will now describe

how this is done explicitly.

There are natural equivalence functors between the categories of G-equivariant vec-

tor bundles over M×G/H and H-equivariant bundles over M , where H acts trivially on

M [14]. If E → M is an H-equivariant bundle, then it defines a G-equivariant bundle

E →M×CP 1×CP 1 by induction as

E = G×HE , (2.8)

where the H-action on G×E is given by h · (g, e) = (g h−1, h · e) for h ∈ H, g ∈ G

and e ∈ E. We therefore focus our attention on the structure of H-equivariant bundles
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E → M . For this, it is more convenient to work in a holomorphic setting by passing

to the universal complexification Gc := G ⊗ C = SL(2,C)×SL(2,C) of the Lie group

G. If E → M×CP 1×CP 1 is a G-equivariant vector bundle, then the G-action can be

extended to an action of Gc. Let K = P×P be the Borel subgroup of Gc with P the

group of lower triangular matrices in SL(2,C). Its Levi decomposition is given by K =

U n Hc, where Hc := H ⊗ C = C××C×. A representation V of K is irreducible if

and only if the action of U on V is trivial and the restriction V |Hc is irreducible. It

follows that there is a one-to-one correspondence between irreducible representations of

K and irreducible representations of the Cartan subgroup H c ⊂ Gc. The natural map

CP 1×CP 1 = G/H → Gc/K is a diffeomorphism of projective varieties. The categorical

equivalence above can then be reformulated as a one-to-one correspondence between Gc-

equivariant bundles E →M×CP 1×CP 1 and K-equivariant bundles over M , with K acting

trivially on M .

The Lie algebra sl(2,C) is generated by the three Pauli matrices

σ3 =

(
1 0

0 −1

)
, σ+ =

(
0 1

0 0

)
and σ− =

(
0 0

1 0

)
(2.9)

with the commutation relations

[σ3 , σ±] = ± 2σ± and [σ+ , σ−] = σ3 . (2.10)

The Lie algebra of U is generated by two independent copies of the element σ−, while the

Cartan subgroup Hc is generated by two independent copies of the element σ3. For each

p ∈ Z there is a unique irreducible representation S p
∼= C of C× given by ζ · v = ζp v for

ζ ∈ C× and v ∈ S p. Thus for each pair of integers p1, p2 there is a unique irreducible

module S
(1)
p1 ⊗ S(2)

p2
∼= C over the subgroup Hc = C×(1)×C

×
(2). Since the manifold M carries

the trivial action of the group H c, any K-equivariant bundle E → M admits a finite

Whitney sum decomposition into isotopical components as E =
⊕

p1,p2
Ep1 p2⊗S(1)

p1 ⊗S(2)
p2 ,

where the sum runs over the set of eigenvalues for the H c-action on E and Ep1 p2 → M

are bundles with the trivial Hc-action. From the commutation relations (2.10) it follows

that the U -action on Ep1 p2 ⊗ S
(1)
p1 ⊗ S(2)

p2 corresponds to independent bundle morphisms

Ep1 p2 → Ep1−2 p2 and Ep1 p2 → Ep1 p2−2, along with the trivial σ−-actions on the irreducible

Hc-modules S
(1)
p1 ⊗ S(2)

p2 .

After an appropriate twist by an H c-module and a relabelling, the σ3-actions are given

by the Hc-equivariant decomposition

E =

m1⊕

i=0

m2⊕

α=0

Ekiα ⊗ S
(1)
m1−2i ⊗ S

(2)
m2−2α , (2.11)
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while the U -action is determined through the diagram

Ekm1 0

φ
(1)
m1 0−−−−→ Ekm1−1 0

φ
(1)
m1−1 0−−−−−→ · · · φ

(1)
10−−−−→ Ek00

φ
(2)
m11

x φ
(2)
m1−1 1

x
xφ(2)

01

...
...

...

φ
(2)
m1 m2−1

x φ
(2)
m1−1m2−1

x
xφ(2)

0m2−1

Ekm1 m2−1

φ
(1)
m1 m2−1−−−−−−→ Ekm1−1m2−1

φ
(1)
m1−1m2−1−−−−−−−−→ · · ·

φ
(1)
1m2−1−−−−−→ Ek0m2−1

φ
(2)
m1m2

x φ
(2)
m1−1m2

x
xφ(2)

0m2

Ekm1 m2
−−−−→
φ

(1)
m1m2

Ekm1−1 m2
−−−−−−→
φ

(1)
m1−1m2

· · · −−−−→
φ

(1)
1m2

Ek0 m2

(2.12)

of holomorphic bundle maps with φ
(1)
m1+1 α = 0 = φ

(1)
0α for α = 0, 1, . . . ,m2 and φ

(2)
i m2+1 =

0 = φ
(2)
i0 for i = 0, 1, . . . ,m1. Since the Lie algebra of U is abelian, these maps generate a

commutative bundle diagram (2.12), i.e. for each i, α one has

φ
(1)
i+1 α φ

(2)
i+1 α+1 = φ

(2)
i α+1 φ

(1)
i+1 α+1 . (2.13)

Finally, we can now consider the underlying H-equivariant hermitean vector bundle and

introduce the standard p`-monopole line bundles

Lp`(`) = SU(2)×U(1) S
(`)
p`

(2.14)

over the homogeneous spaces CP 1
(`) for ` = 1, 2. Then the original rank k hermitean vector

bundle (2.8) over M×CP 1
(1)×CP 1

(2) admits an equivariant decomposition

E =

m1⊕

i=0

m2⊕

α=0

Eiα with Eiα = Ekiα ⊗L
m1−2i
(1) ⊗Lm2−2α

(2) , (2.15)

where Ekiα → M is a hermitean vector bundle of rank kiα with typical fibre the module

V kiα in (2.6), and Eiα →M×CP 1
(1)×CP 1

(2) is the bundle with fibres

(
Eiα
)

(x, y1, ȳ1, y2, ȳ2)
=
(
Ekiα

)
x
⊗
(
Lm1−2i

(1)

)
(y1,ȳ1)

⊗
(
Lm2−2α

(2)

)
(y2, ȳ2)

. (2.16)

2.3 Equivariant gauge fields

Let A be a connection on the hermitean vector bundle E → M×CP 1
(1)×CP 1

(2) having the

form A = Aµ̂ dxµ̂ in local coordinates (xµ̂) and taking values in the Lie algebra u(k). We

will now describe the G-equivariant reduction of A on M×CP 1
(1)×CP 1

(2). The spherical

dependences are completely determined by the unique SU(2)-invariant connections a
(`)
p` ,

` = 1, 2, on the monopole line bundles (2.14) having, in local complex coordinates on

CP 1
(`), the forms

a(`)
p`

=
p`

2 (1 + y`ȳ`)
(ȳ` dy` − y` dȳ`) . (2.17)
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The curvatures of these connections are

f (`)
p`

= da(`)
p`

= − p`

(1 + y`ȳ`)
2 dy` ∧ dȳ` , (2.18)

and their topological charges are given by the degrees of the complex line bundles Lp`(`) →
CP 1

(`) as

deg Lp`(`) =
i

2π

∫

CP 1
(`)

f (`)
p`

= p` . (2.19)

In the spherical coordinates (ϑ`, ϕ`) ∈ S2
(`) the monopole fields can be written as

a(`)
p`

= − i p`
2

(1− cosϑ`) dϕ` and f (`)
p`

= da(`)
p`

= − i p`
2

sinϑ` dϑ`∧dϕ` . (2.20)

Related to the monopole fields are the unique, covariantly constant SU(2)-invariant forms

of types (1, 0) and (0, 1) on CP 1
(`) given respectively by

β` =
dy`

1 + y`ȳ`
and β̄` =

dȳ`
1 + y`ȳ`

. (2.21)

They take values respectively in the components L2
(`) and L−2

(`) of the complexified cotangent

bundle T ∗CP 1
(`) ⊗ C = L2

(`) ⊕ L−2
(`) over CP 1

(`). Note that there is no summation over the

index ` in (2.17)–(2.21).

With respect to the isotopical decomposition (2.15), the twisted u(k)-valued gauge

potential A thus splits into kiα×kjβ blocks as

A =
(
Aiα, jβ

)
with Aiα, jβ ∈ Hom

(
V kjβ

, V kiα

)
, (2.22)

where

Aiα, iα = Aiα(x)⊗ 1⊗ 1 + 1kiα ⊗
(
a

(1)
m1−2i(y1)⊗ 1 + 1⊗ a(2)

m2−2α(y2)
)
, (2.23)

Aiα, i+1α =: Φ
(1)
i+1α = φ

(1)
i+1α(x)⊗ β̄1(y1)⊗ 1 , (2.24)

Ai+1α, iα = −
(
Aiα, i+1α

)†
= −

(
φ

(1)
i+1α(x)

)† ⊗ β1(y1)⊗ 1 , (2.25)

Aiα, i α+1 =: Φ
(2)
i α+1 = φ

(2)
i α+1(x)⊗ 1⊗ β̄2(y2) , (2.26)

Ai α+1, iα = −
(
Aiα, i α+1

)†
= −

(
φ

(2)
i α+1(x)

)† ⊗ 1⊗ β2(y2) . (2.27)

All other components Aiα, jβ vanish, while the bundle morphisms Φ
(1)
i+1α ∈ Hom(Ei+1α, Eiα)

and Φ
(2)
i α+1 ∈ Hom(Ei α+1, Eiα) obey Φ

(1)
m1+1 α = 0 = Φ

(1)
0α for α = 0, 1, . . . ,m2 and Φ

(2)
i m2+1 =

0 = Φ
(2)
i0 for i = 0, 1, . . . ,m1. The gauge potentials Aiα ∈ u(kiα) are connections on the

hermitean vector bundles Ekiα → M , while the bi-fundamental scalar fields φ
(1)
i+1α and

φ
(2)
i α+1 transform in the representations V kiα ⊗V ∨ki+1α

and V kiα⊗V ∨ki α+1
of the subgroups

U(kiα)×U(ki+1α) and U(kiα)×U(ki α+1) of the original U(k) gauge group.
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The curvature two-form F = dA+A∧A of the connection A has components Fµ̂ν̂ =

∂µ̂Aν̂ − ∂ν̂Aµ̂ + [Aµ̂,Aν̂ ] in local coordinates (xµ̂), where ∂µ̂ := ∂/∂xµ̂. It also take values

in the Lie algebra u(k), and in local coordinates on M×CP 1
(1)×CP 1

(2) it can be written as

F = 1
2 Fµν dxµ ∧ dxν + Fµy1 dxµ ∧ dy1 + Fµȳ1 dxµ ∧ dȳ1 +Fµy2 dxµ ∧ dy2

+Fµȳ2 dxµ ∧ dȳ2 +Fy1ȳ1 dy1 ∧ dȳ1 + Fy2ȳ2 dy2 ∧ dȳ2 + Fy1y2 dy1 ∧ dy2

+Fȳ1ȳ2 dȳ1 ∧ dȳ2 + Fy1ȳ2 dy1 ∧ dȳ2 + Fȳ1y2 dȳ1 ∧ dy2 . (2.28)

The calculation of the curvature (2.28) for A of the form (2.22)–(2.27) yields

F =
(
F iα, jβ

)
with F iα, jβ = dAiα, jβ +

m1∑

l=0

m2∑

γ=0

Aiα, lγ ∧Alγ, jβ , (2.29)

where

F iα, iα = F iα + f
(1)
m1−2i + f

(2)
m2−2α

+
(
φ

(1)
i+1α

(
φ

(1)
i+1α

)† −
(
φ

(1)
iα

)†
φ

(1)
iα

) (
β1 ∧ β̄1

)

+
(
φ

(2)
i α+1

(
φ

(2)
i α+1

)† −
(
φ

(2)
iα

)†
φ

(2)
iα

) (
β2 ∧ β̄2

)
, (2.30)

F iα, i+1α = Dφ
(1)
i+1 α ∧ β̄1 , (2.31)

F i+1α, iα = −
(
F iα, i+1α

)†
= −

(
Dφ

(1)
i+1α

)† ∧ β1 , (2.32)

F iα, i α+1 = Dφ
(2)
i α+1 ∧ β̄2 , (2.33)

F i α+1, iα = −
(
F iα, i α+1

)†
= −

(
Dφ

(2)
i α+1

)† ∧ β2 , (2.34)

F iα, i+1α+1 =
(
φ

(1)
i+1α φ

(2)
i+1α+1 − φ

(2)
i α+1 φ

(1)
i+1α+1

)
β̄1 ∧ β̄2 , (2.35)

F i+1α+1, i α = −
(
F iα, i+1α+1

)†
= −

(
φ

(1)
i+1α φ

(2)
i+1α+1 − φ

(2)
i α+1 φ

(1)
i+1α+1

)†
β1 ∧ β2 , (2.36)

F i α+1, i+1α =
((
φ

(2)
i α+1

)†
φ

(1)
i+1α − φ

(1)
i+1α+1

(
φ

(2)
i+1α+1

)†)
β̄1 ∧ β2 , (2.37)

F i+1α, i α+1 = −
(
F i α+1, i+1α

)†
=
((
φ

(1)
i+1α

)†
φ

(2)
i α+1 − φ

(2)
i+1α+1

(
φ

(1)
i+1α+1

)†)
β̄2 ∧ β1(2.38)

with all other components vanishing. We have suppressed the tensor product structure per-

taining to M×CP 1×CP 1 in (2.30)–(2.38). Here F iα := dAiα+Aiα∧Aiα = 1
2 F

iα
µν dxµ∧dxν

are the curvatures of the bundles Ekiα → M , and we have introduced the bi-fundamental

covariant derivatives

Dφ
(1)
i+1α := dφ

(1)
i+1α +Aiα φ

(1)
i+1α − φ

(1)
i+1αA

i+1α , (2.39)

Dφ
(2)
i α+1 := dφ

(2)
i α+1 +Aiα φ

(2)
i α+1 − φ

(2)
i α+1A

i α+1 . (2.40)
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From (2.30)–(2.38) we find the non-vanishing field strength components

F iα, iαµν = F iαµν , (2.41)

F iα, i+1α
µȳ1

=
1

1 + y1ȳ1
Dµφ

(1)
i+1α = −

(
F i+1α, iα
µy1

)†
, (2.42)

F iα, i α+1
µȳ2

=
1

1 + y2ȳ2
Dµφ

(2)
i α+1 = −

(
F i α+1, iα
µy2

)†
, (2.43)

F iα, iαy1ȳ1
= − 1

(1 + y1ȳ1)2

(
(m1 − 2i) 1kiα +

(
φ

(1)
iα

)†
φ

(1)
iα − φ

(1)
i+1α

(
φ

(1)
i+1α

)†)
, (2.44)

F iα, iαy2ȳ2
= − 1

(1 + y2ȳ2)2

(
(m2 − 2α) 1kiα +

(
φ

(2)
iα

)†
φ

(2)
iα − φ

(2)
i α+1

(
φ

(2)
i α+1

)†)
(2.45)

and

F iα, i+1α+1
ȳ1ȳ2

=
φ

(1)
i+1α φ

(2)
i+1α+1 − φ

(2)
i α+1 φ

(1)
i+1α+1

(1 + y1ȳ1) (1 + y2ȳ2)
= −

(
F i+1α+1, iα
y1y2

)†
, (2.46)

F i α+1, i+1α
y1ȳ2

=

(
φ

(2)
i α+1

)†
φ

(1)
i+1α − φ

(1)
i+1α+1

(
φ

(2)
i+1α+1

)†

(1 + y1ȳ1) (1 + y2ȳ2)
= −

(
F i+1α, i α+1
ȳ1y2

)†
. (2.47)

Note that at this stage we do not generally require the imposition of the holomorphic

constraints (2.13) in this ansatz, which ensure that the bundle diagram (2.12) commutes.

Later on we will see that they arise as a dynamical constraint for BPS solutions of the Yang-

Mills equations on M×CP 1
(1)×CP 1

(2) that force the vanishing of the cross-components (2.46)

of the field strength tensor between the two copies of the sphere. In fact, our particular

ansatz in the noncommutative gauge theory will automatically satisfy this condition, as

well as the analogous ones which force the cross-components (2.47) to vanish.

2.4 The Yang-Mills functional

Let us now consider the equivariant reduction of the Yang-Mills lagrangian

LYM := −1
4

√
ĝ trk×k Fµ̂ν̂ F µ̂ν̂

= −1
4

√
ĝ trk×k

{
Fµν Fµν + gµν gy1ȳ1 (Fµy1 Fνȳ1 + Fµȳ1 Fνy1)

+ gµν gy2ȳ2 (Fµy2 Fνȳ2 + Fµȳ2 Fνy2)− 2
(
gy1ȳ1 Fy1ȳ1

)2 − 2
(
gy2ȳ2 Fy2ȳ2

)2

+ 2 gy1ȳ1 gy2ȳ2 (Fȳ1ȳ2 Fy1y2 +Fy1y2 Fȳ1ȳ2 + Fȳ1y2 Fy1ȳ2 + Fy1ȳ2 Fȳ1y2)
}
,(2.48)

where ĝ = det(gµ̂ν̂) = g gCP 1
(1)

gCP 1
(2)

with g = det(gµν) and

√
gCP 1

(`)

=
2R2

`

(1 + y`ȳ`)
2 =

(
gy`ȳ`

)−1
. (2.49)

For the ansatz of the section 2.3 above we substitute (2.41)–(2.47). After integration over
the spherical factors CP 1

(1)×CP 1
(2), the dimensional reduction of the corresponding Yang-

– 9 –
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Mills action functional is given by

SYM :=

∫

M×CP 1
(1)
×CP 1

(2)

d2n+4x LYM

= π R2
1 R

2
2

∫

M

d2nx
√
g

m1∑

i=0

m2∑

α=0

trkiα×kiα

[(
F iαµν

)†
F iα µν (2.50)

+
1

R2
1

(
Dµφ

(1)
i+1α

) (
Dµφ

(1)
i+1α

)†
+

1

R2
1

(
Dµφ

(1)
iα

)† (
Dµφ

(1)
iα

)

+
1

R2
2

(
Dµφ

(2)
i α+1

) (
Dµφ

(2)
i α+1

)†
+

1

R2
2

(
Dµφ

(2)
iα

)† (
Dµφ

(2)
iα

)

+
1

2R4
1

(
(m1 − 2i) 1kiα +

(
φ

(1)
iα

)†
φ

(1)
iα − φ

(1)
i+1 α

(
φ

(1)
i+1α

)†)2

+
1

2R4
2

(
(m2 − 2α) 1kiα +

(
φ

(2)
iα

)†
φ

(2)
iα − φ

(2)
i α+1

(
φ

(2)
i α+1

)†)2

+
1

2R2
1R

2
2

(
φ

(1)
i+1α φ

(2)
i+1 α+1 − φ

(2)
i α+1 φ

(1)
i+1α+1

) (
φ

(1)
i+1α φ

(2)
i+1 α+1 − φ

(2)
i α+1 φ

(1)
i+1α+1

)†

+
1

2R2
1R

2
2

(
φ

(1)
i α−1 φ

(2)
iα − φ

(2)
i−1α φ

(1)
iα

)† (
φ

(1)
i α−1 φ

(2)
iα − φ

(2)
i−1α φ

(1)
iα

)

+
1

2R2
1R

2
2

((
φ

(2)
iα

)†
φ

(1)
i+1 α−1 − φ

(1)
i+1 α

(
φ

(2)
i+1α

)†) ((
φ

(2)
iα

)†
φ

(1)
i+1 α−1 − φ

(1)
i+1α

(
φ

(2)
i+1 α

)†)†

+
1

2R2
1R

2
2

((
φ

(2)
i−1α+1

)†
φ

(1)
iα − φ

(1)
i α+1

(
φ

(2)
i α+1

)†)† ((
φ

(2)
i−1α+1

)†
φ

(1)
iα − φ

(1)
i α+1

(
φ

(2)
i α+1

)†)]
.

All individual terms in (2.50) are kiα×kiα matrices. Recall that φ
(1)
i+1α are kiα×ki+1α

matrices, φ
(2)
i α+1 are kiα×ki α+1 matrices and Aiαµ are kiα×kiα matrices. The action (2.50)

is non-negative, and it can be regarded as an energy functional for static fields on R0,1×M
in the temporal gauge.

2.5 Noncommutative gauge theory

When we come to construct explicit solutions of the Yang-Mills equations we will specialize

to the Kähler manifold M = R2n with metric tensor gµν = δµν and pass to a noncommu-

tative deformation R2n → R2n
θ . The spherical factors CP 1

(`), ` = 1, 2, will always remain

commutative spaces. The noncommutative space R2n
θ is defined by declaring its coordinate

functions x̂1, . . . , x̂2n to obey the Heisenberg algebra relations

[x̂µ , x̂ν ] = i θµν (2.51)

with a constant real antisymmetric tensor θµν of maximal rank n. Via an orthogonal

transformation of the coordinates, the matrix θ = (θµν) can be rotated into its canonical

block-diagonal form with non-vanishing components

θ2a−1 2a = −θ2a 2a−1 =: θa (2.52)

for a = 1, . . . , n. We will assume for definiteness that all θa > 0. The noncommutative

version of the complex coordinates (2.1) has the non-vanishing commutators

[
ẑa , ˆ̄zb̄

]
= −2 δab̄ θa =: θab̄ = −θb̄a < 0 . (2.53)

– 10 –
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Taking the product of R2n
θ with the commutative spheres CP 1

(1)×CP 1
(2) means extending

the noncommutativity matrix θ by vanishing entries along the four new directions.

The algebra (2.51) can be represented on the Fock space H which may be realized as

the linear span

H =

∞⊕

r1,...,rn=0

C|r1, . . . , rn〉 , (2.54)

where the orthonormal basis states

|r1, . . . , rn〉 =
n∏

a=1

(2 θa ra!)
−1/2 (ẑa)ra |0, . . . , 0〉 (2.55)

are connected by the action of creation and annihilation operators subject to the commu-

tation relations [ ˆ̄zb̄√
2 θb

,
ẑa√
2 θa

]
= δab̄ . (2.56)

In the Weyl operator realization f 7→ f̂ which maps Schwartz functions f on R2n into

compact operators f̂ on H, coordinate derivatives are given by inner derivations of the

noncommutative algebra according to

∂̂zaf = θab̄
[
ˆ̄zb̄ , f̂

]
=: ∂ẑa f̂ and ∂̂z̄āf = θāb

[
ẑb , f̂

]
=: ∂ˆ̄z ā f̂ , (2.57)

where θab̄ is defined via θbc̄ θ
c̄a = δab so that θab̄ = −θb̄a =

δab̄
2 θa . On the other hand, integrals

are given by traces over the Fock space H as
∫

R2n

d2nx f(x) = Pf(2π θ) TrH f̂ . (2.58)

Vector bundles E → R2n whose typical fibres are complex vector spaces V are replaced

by the corresponding (trivial) projective modules V ⊗ H over R2n
θ . The field strength

components along R2n
θ in (2.28) read F̂µν = ∂x̂µÂν − ∂x̂ν Âµ + [Âµ, Âν ], where Âµ are

simultaneously valued in u(k) and in End(H). To avoid a cluttered notation, we will omit

the hats over operators, so that all equations will have the same form as previously but

considered as equations in End(V ⊗H). The main advantage of this prescription will arise

from the fact that, unlike R2n, the noncommutative space R2n
θ has a non-trivial K-theory

which allows for gauge field configurations of non-trivial topological charge while retaining

the simple geometry of flat contractible space.

3. Quiver gauge theory and graded connections

In this section we will exploit the fact that the G-equivariant reduction carried out in the

previous section has a natural interpretation as the representation of a particular class of

quivers in the category of vector bundles over the Kähler manifold M , i.e. as a quiver bundle

over M [14, 15, 20]. The most natural notion of gauge field on a quiver bundle is provided

by that of a graded connection as introduced in [18]. After describing some general aspects

of the quivers related to our analysis, we will rewrite the equivariant decomposition of the

– 11 –
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gauge fields of the previous section in terms of graded connections on the pertinent quivers.

Besides its mathematical elegance, the main advantage of this representation is that it will

make the physical interpretations of our field configurations completely transparent later

on. Treatments of the theory of quivers can be found in [21].

3.1 The Am1+1 ⊕Am2+1 quiver and its representations

A quiver is an oriented graph, i.e. a set of vertices together with a set of arrows be-

tween the vertices. For a given pair of positive integers m1,m2, it is clear that the bun-

dle diagram (2.12) can be naturally associated to a quiver Q(m1,m2). The nodes of this

quiver are labelled by monopole charges giving the vertex set Q
(0)
(m1 ,m2) = {(v(1)

i , v
(2)
α ) =

(m1 − 2i,m2 − 2α) | 0 ≤ i ≤ m1 , 0 ≤ α ≤ m2}. The arrow set is given by Q
(1)
(m1,m2)

=

{ζ(`)
iα | ` = 1, 2 , 0 ≤ i ≤ m1 , 0 ≤ α ≤ m2} with ζ

(1)
i+1α : (v

(1)
i+1, v

(2)
α ) 7→ (v

(1)
i , v

(2)
α )

and ζ
(2)
i α+1 : (v

(1)
i , v

(2)
α+1) 7→ (v

(1)
i , v

(2)
α ). A path in Q(m1,m2) is a sequence of arrows in

Q
(1)
(m1 ,m2) which compose. If the head of ζ

(`)
iα is the same node as the tail of ζ

(`′ )
i′α′ , then

we may produce a path ζ
(`′ )
i′α′ ζ

(`)
iα consisting of ζ

(`)
iα followed by ζ

(`′ )
i′α′ . To each vertex

(m1 − 2i,m2 − 2α) we associate the trivial path eiα of length 0. Each arrow ζ
(`)
iα itself

may be associated to a path of length 1. A relation r of the quiver is a formal finite sum

of paths. From (2.13) it follows that the set R(m1,m2) of relations of Q(m1 ,m2) are given by

riα = ζ
(1)
i+1 α ζ

(2)
i+1 α+1 − ζ

(2)
i α+1 ζ

(1)
i+1 α+1 for 0 ≤ i ≤ m1, 0 ≤ α ≤ m2.

If we set M = point in the construction of section 2.2, then we obtain a representation

V of the quiver Q(m1 ,m2) obtained by placing the G-modules V kiα in (2.6) at the vertices

(m1 − 2i,m2 − 2α). Recalling that the nodes of the quiver arose as the set of weights for

the action of the Borel subgroup K on the bundle E →M , we obtain natural equivalence

functors between the categories of holomorphic representations of K and indecomposable

representations of the quiver with relations (Q(m1 ,m2) , R(m1 ,m2)), and also with the cate-

gory of holomorphic homogeneous vector bundles over CP 1×CP 1 ∼= Gc/K. In particular,

there is a one-to-one correspondence between G-equivariant vector bundles over CP 1×CP 1

and commutative diagrams on the quiver Q(m1,m2). In the case of a generic Kähler manifold

M , any G-equivariant bundle over M×CP 1×CP 1 defines a quiver representation obtained

by placing the vector bundles Ekiα → M at the vertices (m1 − 2i,m2 − 2α), as in (2.12).

It follows that there is a one-to-one correspondence between such bundles and indecom-

posable (Q(m1 ,m2) , R(m1,m2))-bundles over M . Neither the holomorphicity of the quiver

representation nor the relations need generically hold for the decomposition of gauge fields

given in section 2.3, but instead will arise as a dynamical effect from a specific choice of

ansatz. Note that when one passes to the corresponding noncommutative gauge theory, one

is faced with infinite-dimensional quiver representations V ⊗H, and one of the goals of our

later constructions will be to find appropriate truncations to finite-dimensional modules

over Q(m1 ,m2).

To aid in the construction of quiver representations, one defines the path algebra

A(m1 ,m2) of Q(m1,m2) to be the vector space over C generated by all paths, together with

the multiplication given by concatenation of paths. If two paths do not compose then their

– 12 –
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product is defined to be 0. The trivial paths are idempotents, e2
iα = eiα, and thereby define a

collection of projectors on the finite-dimensional free algebra A(m1,m2). Imposing relations

on the quiver then amounts to taking the quotient of A(m1,m2) by the ideal generated

by the riα. Given a representation V of the algebra A(m1,m2), we can form the vector

spaces V kiα = V · eiα ∼= Ckiα . The elements of A(m1,m2) corresponding to arrows in

Q(m1 ,m2) yield linear maps between the V kiα which have to satisfy the relations riα = 0. It

follows that representations of the path algebra A(m1,m2)/R(m1 ,m2) are equivalent to quiver

representations of (Q(m1 ,m2) , R(m1,m2)) [21]. Such a representation is specified by giving the

ordered collection of positive integers ~k = ~kV := (kiα)0≤i≤m1 ,0≤α≤m2 , called the dimension

vector of the quiver representation, at the vertices of Q(m1,m2).

A useful set of quiver representations P iα is defined for each vertex of Q(m1 ,m2) by

P iα := eiα · A(m1,m2), which is the subspace of A(m1,m2) generated by all paths starting at

the node (m1 − 2i,m2 − 2α). Multiplying on the right by elements of the path algebra

A(m1 ,m2) makes P iα into a right A(m1,m2)-module and hence a quiver representation. This

path algebra representation has many special properties. The collection of all modules P iα,

0 ≤ i ≤ m1, 0 ≤ α ≤ m2 are exactly the set of all indecomposable projective representations

of the quiver Q(m1,m2), with the natural isomorphism

A(m1,m2) =

m1⊕

i=0

m2⊕

α=0

P iα (3.1)

as right A(m1,m2)-modules. Furthermore, for any quiver representation (2.6) there is a

natural isomorphism

Hom
(
P iα , V

)
= V kiα , (3.2)

and in particular

Hom
(
P jβ , P iα

)
=
(
P iα

)
jβ

= eiα · A(m1,m2) · ejβ (3.3)

is the vector space spanned by all paths from vertex (v
(1)
i , v

(2)
α ) to vertex (v

(1)
j , v

(2)
β ). Impos-

ing the relations riα identifies all such paths and one has (P iα)jβ ∼= C for the corresponding

quiver representation of (Q(m1 ,m2) , R(m1,m2)).

A morphism f : V → V ′ of two quiver representations is given by linear maps

fiα : V kiα → V ′ k′iα for each vertex such that φ
′ (1)
i+1α fiα = fi+1α φ

(1)
i+1α and φ

′ (2)
i α+1 fiα =

fi α+1 φ
(2)
i α+1. This notion defines the abelian category of quiver representations (or equiv-

alently of right A(m1,m2)-modules). If all linear maps fiα are invertible, then f is called

an isomorphism of quiver representations. Any two isomorphic representations necessarily

have the same dimension vector ~k. This provides a natural notion of gauge symmetry in

quiver gauge theory. We will return to the issue of equivalence of representations of the

quiver Q(m1,m2) in section 4.5.

3.2 Matrix presentation of equivariant gauge fields

A convenient way of combining the reductions of equivariant gauge fields is through the

formalism of graded connections introduced in [18]. The first step in this procedure is
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to rewrite the decompositions of section 2.3 in a particular matrix form that reflects the

representations of the path algebra given in (3.1)–(3.3). The basic idea is that, given the

isomorphisms (P iα)jβ ∼= C, one can identify (3.1) with an algebra of upper triangular

complex matrices. For this, let us write the rank k equivariant bundle E → M in the

Zm1+1×Zm2+1-graded form

E :=

m1⊕

i=0

m2⊕

α=0

Ekiα =

m2⊕

α=0

E(m1)α with E(m1)α :=

m1⊕

i=0

Ekiα . (3.4)

The algebra Ω](M,E) of differential forms on the manifold M with values in the bundle

E has a total Zm1+1×Zm2+1 grading defined by combining the grading in (3.4) with the

Z-grading by form degree. Similarly, the Zm1+1×Zm2+1 grading of the endomorphism

bundle

End(E) =

m1⊕

i,j=0

m2⊕

α,β=0

Hom(Ekiα , Ekjβ )

=

m2⊕

α=0

End(E(m1)α) ⊕
m2⊕

α,β=0
α6=β

Hom(E(m1)α, E(m1)β) (3.5)

induces a total Zm1+1×Zm2+1 grading on the endomorphism algebra Ω](M,End E).

A graded connection on E is a derivation on Ω](M,E) which shifts the total Zm1+1×
Zm2+1 grading by 1, and is thus an element of the degree 1 subspace of Ω](M,End E). For

a given module (2.6) over the quiver Q(m1 ,m2), the zero-form components in this subspace

represent the arrows of Q(m1,m2) and are defined by appropriately assembling the Higgs

fields of the equivariant gauge potentials into off-diagonal operators in (3.5) acting on the

decomposition in (3.4). To this end we introduce square matrices of morphisms acting on

the bundles E(m1)α through

φ
(1)
(m1)α :=




0 φ
(1)
1α 0 . . . 0

0 0 φ
(1)
2α

. . .
...

...
...

. . .
. . . 0

0 0 . . . 0 φ
(1)
m1α

0 0 . . . 0 0




with α = 0, 1, . . . ,m2 (3.6)

and assemble them into a k×k matrix with respect to the grading (3.4) and (3.5) as

φ
(1)
(m1 ,m2) :=




φ
(1)
(m1)0 0 0 . . . 0

0 φ
(1)
(m1)1 0 . . . 0

0 0 φ
(1)
(m1)2

. . .
...

...
...

. . .
. . . 0

0 0 . . . 0 φ
(1)
(m1)m2




. (3.7)
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Remembering that φ
(2)
i m2+1 := 0 ∀i = 0, 1, . . . ,m1, we similarly define matrices of mor-

phisms on E(m1)α+1 through

φ
(2)
(m1)α+1 :=




φ
(2)
0α+1 0 0 . . . 0

0 φ
(2)
1α+1 0 . . . 0

0 0 φ
(2)
2α+1

. . .
...

...
...

. . .
. . . 0

0 0 . . . 0 φ
(2)
m1 α+1




with α = 0, 1, . . . ,m2 (3.8)

and assemble them into a k×k matrix acting on (3.4) as

φ
(2)
(m1 ,m2) :=




0 φ
(2)
(m1)1 0 . . . 0

0 0 φ
(2)
(m1)2

. . .
...

...
...

. . .
. . . 0

0 0 . . . 0 φ
(2)
(m1)m2

0 0 . . . 0 0




. (3.9)

The finite dimensionality of the path algebra (3.1) corresponds to the generic nilpotency

properties

φ
(1)
(m1,m2)

,
(
φ

(1)
(m1,m2)

)2
, . . . ,

(
φ

(1)
(m1 ,m2)

)m1 6= 0 but
(
φ

(1)
(m1,m2)

)m1+1
= 0 ,

φ
(2)
(m1,m2),

(
φ

(2)
(m1,m2)

)2
, . . . ,

(
φ

(2)
(m1 ,m2)

)m2 6= 0 but
(
φ

(2)
(m1,m2)

)m2+1
= 0 . (3.10)

The holomorphic relations (2.13) now take the simple algebraic form of commutativity of

the matrices (3.7) and (3.9) as
[
φ

(1)
(m1 ,m2) , φ

(2)
(m1 ,m2)

]
= 0 . (3.11)

Although a very natural requirement, the condition (3.11) is not necessary for the present

formulation and the relations R(m1,m2) of the quiver Q(m1,m2) will only play a prominent

role in the subsequent sections.

The one-form components of the graded connection represent the vertices of Q(m1,m2)

and correspond to diagonal operators in the decomposition (3.5). They can be written

using the canonical orthogonal projections Πiα : E → Ekiα of rank 1 obeying

Πiα Πjβ = δij δαβ Πiα (3.12)

which may be represented, with respect to the decomposition (3.4), by the diagonal matrices

Πiα =
(
δij δil δαβ δαγ

)j,l=0,1,...,m1

β,γ=0,1,...,m2
. (3.13)

The gauge potentials living at the vertices of the quiver may then be assembled into the

k×k matrix

A(m1,m2) :=

m1∑

i=0

m2∑

α=0

Aiα ⊗Πiα . (3.14)
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To rewrite the equivariant decomposition of the components of the gauge potentials on

the bundle E →M×CP 1
(1)×CP 1

(2), we assemble the monopole connections into the matrices

a(m1) :=

m1∑

i=0

a
(1)
m1−2i ⊗Πi with Πi :=

m2⊕

α=0

Πiα , (3.15)

a(m2) :=

m2∑

α=0

a
(2)
m2−2α ⊗Πα with Πα :=

m1⊕

i=0

Πiα (3.16)

and the monopole charges labelling the vertices of Q(m1 ,m2) into the matrices

Υ
(1)
(m1,m2) :=

m1∑

i=0

(m1 − 2i) Πi , (3.17)

Υ
(2)
(m1,m2) :=

m2∑

α=0

(m2 − 2α) Πα . (3.18)

Then the ansatz (2.22)–(2.27) can be rewritten in terms of the matrix operators (3.6)–(3.9)

and (3.14)–(3.16) as

Aµ =
(
A(m1 ,m2)

)
µ
⊗ 1⊗ 1 , (3.19)

Ay1 = 1k ⊗
(
a(m1)

)
y1
⊗ 1−

(
φ

(1)
(m1 ,m2)

)† ⊗ (β1)y1 ⊗ 1 , (3.20)

Ay2 = 1k ⊗ 1⊗
(
a(m2)

)
y2
−
(
φ

(2)
(m1 ,m2)

)† ⊗ 1⊗ (β2)y2 , (3.21)

Aȳ1 = 1k ⊗
(
a(m1)

)
ȳ1
⊗ 1 + φ

(1)
(m1,m2) ⊗ (β̄1)ȳ1 ⊗ 1 , (3.22)

Aȳ2 = 1k ⊗ 1⊗
(
a(m2)

)
ȳ2

+ φ
(2)
(m1,m2) ⊗ 1⊗ (β̄2)ȳ2 . (3.23)

As we will see in section 3.4, the scalar potential in (2.50) can be rewritten entirely in

terms of the natural algebraic operators Υ
(1)
(m1 ,m2) −

[
φ

(1)
(m1,m2), (φ

(1)
(m1,m2))

†], Υ
(2)
(m1,m2) −[

φ
(2)
(m1 ,m2), (φ

(2)
(m1 ,m2))

†],
[
φ

(1)
(m1 ,m2),φ

(2)
(m1,m2)

]
and

[
φ

(1)
(m1 ,m2), (φ

(2)
(m1 ,m2))

†] on the quiver

Q(m1 ,m2).

3.3 Examples

To help understand the forms of the matrix presentations introduced above, it is instructive

to look at some explicit examples of (Q(m1,m2) , R(m1,m2))-bundles over M before proceeding

further with more of the general formalism.

(m1,m2) = (m, 0). In this case the vertical arrows ζ
(2)
iα of the quiver Q(m,0) are all 0

and the quiver bundle (2.12) collapses to the holomorphic chain [13]

Ekm 0

φ
(1)
m 0−−−−→ Ekm−1 0

φ
(1)
m−1 0−−−−→ · · · φ

(1)
10−−−−→ Ek00

(3.24)

considered in [18]. The quiver Q(m,0) is called the Am+1-quiver. The set of relations

R(m,0) is empty and the non-vanishing Higgs fields are assembled into the zero-form graded
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connection component

φ
(1)
(m,0) = φ

(1)
(m)0 =




0 φ
(1)
10 0 . . . 0

0 0 φ
(1)
20

. . .
...

...
...

. . .
. . . 0

0 0 . . . 0 φ
(1)
m0

0 0 . . . 0 0




on E = E(m)0 =

m⊕

i=0

Eki0 . (3.25)

The simplest case m = 1 gives a holomorphic triple [12] and corresponds to the more

standard superconnections, having (φ
(1)
(1,0))

2 = 0, which characterize the low-energy field

content on brane-antibrane systems with the tachyon field φ
(1)
10 between the branes and

antibranes [2, 17]. A completely analogous characterization holds for the charge configu-

ration (m1,m2) = (0,m). As we will discuss further in the subsequent sections, for generic

m1,m2 the set of relations R(m1,m2), making the vector space (P iα)jβ one-dimensional,

implies that the quiver Q(m1 ,m2) can always be naturally mapped (e.g. via a lexicographic

ordering) onto an Am+1-quiver. This will become evident from the other examples consid-

ered below, and will have important physical ramifications later on.

(m1,m2) = (1, 1). In this case the quiver bundle truncates to a square

Ek10

φ
(1)
10−−−−→ Ek00

φ
(2)
11

x
xφ(2)

01

Ek11
−−−−→
φ

(1)
11

Ek01

(3.26)

and uniqueness of the bundle morphism on Ek11 → Ek00 (or of the corresponding path in

the path algebra A(1,1)) yields the single holomorphic relation

φ
(2)
01 φ

(1)
11 = φ

(1)
10 φ

(2)
11 . (3.27)

The equivariant graded connection admits the matrix presentation

A =




A00,00 φ
(1)
10 φ

(2)
01 0

−
(
φ

(1)
10

)† A10,10 0 φ
(2)
11

−
(
φ

(2)
11

)†
0 A01,01 φ

(1)
11

0 −
(
φ

(2)
11

)† −
(
φ

(1)
11

)† A11,11




. (3.28)

(m1,m2) = (2, 1). The quiver bundle over M associated to Q(2,1) is given by

Ek20

φ
(1)
20−−−−→ Ek10

φ
(1)
10−−−−→ Ek00

φ
(2)
21

x φ
(2)
11

x
xφ(2)

01

Ek21
−−−−→
φ

(1)
21

Ek11
−−−−→
φ

(1)
11

Ek01

(3.29)
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with the pair of holomorphic relations

φ
(2)
11 φ

(1)
21 = φ

(1)
20 φ

(2)
21 and φ

(2)
01 φ

(1)
11 = φ

(1)
10 φ

(2)
11 . (3.30)

The graded connection zero-form components

φ
(1)
(2,1) :=




0 φ
(1)
10 0 0 0 0

0 0 φ
(1)
20 0 0 0

0 0 0 0 0 0

0 0 0 0 φ
(1)
11 0

0 0 0 0 0 φ
(1)
21

0 0 0 0 0 0




and φ
(2)
(2,1) :=




0 0 0 φ
(2)
01 0 0

0 0 0 0 φ
(2)
11 0

0 0 0 0 0 φ
(2)
21

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




(3.31)

satisfy the nilpotent relations

(
φ

(1)
(2,1)

)2 6= 0 ,
(
φ

(1)
(2,1)

)3
= 0 and

(
φ

(2)
(2,1)

)2
= 0 . (3.32)

It is straightforward to check that the holomorphic relations (3.30) follow from the com-

mutativity condition (3.11) in this case.

(m1,m2) = (2, 2). Finally, the (Q(2,2) , R(2,2))-bundle is given by

Ek20

φ
(1)
20−−−−→ Ek10

φ
(1)
10−−−−→ Ek00

φ
(2)
21

x φ
(2)
11

x
xφ(2)

01

Ek21
−−−−→
φ

(1)
21

Ek11
−−−−→
φ

(1)
11

Ek01

φ
(2)
22

x φ
(2)
12

x
xφ(2)

02

Ek22
−−−−→
φ

(1)
22

Ek12
−−−−→
φ

(1)
12

Ek02

(3.33)

with

φ
(1)
(2,2) ⊕ φ

(2)
(2,2) =




0 φ
(1)
10 0 φ

(2)
01 0 0 0 0 0

0 0 φ
(1)
20 0 φ

(2)
11 0 0 0 0

0 0 0 0 0 φ
(2)
21 0 0 0

0 0 0 0 φ
(1)
11 0 φ

(2)
02 0 0

0 0 0 0 0 φ
(1)
21 0 φ

(2)
12 0

0 0 0 0 0 0 0 0 φ
(2)
22

0 0 0 0 0 0 0 φ
(1)
12 0

0 0 0 0 0 0 0 0 φ
(1)
22

0 0 0 0 0 0 0 0 0




(3.34)

satisfying (
φ

(`)
(2,2)

)2 6= 0 and
(
φ

(`)
(2,2)

)3
= 0 for ` = 1, 2 . (3.35)
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3.4 Graded connections on Q(m1,m2)

We would now like to write the graded connections as intrinsic objects to the quiver bun-

dle (2.12) over M , without explicit reference to their origin as connections on the equivari-

ant gauge bundle E →M×CP 1
(1)×CP 1

(2). For this, we will introduce a more direct dimen-

sional reduction of the gauge potential A. The construction exploits the usual canonical

isomorphism between the complexified exterior algebra bundle over M×CP 1
(1)×CP 1

(2) and

the corresponding graded Clifford algebra bundle, which sends the exterior product into

completely antisymmetrized Clifford multiplication and the local cotangent basis dx µ̂ onto

the Clifford algebra generators Γµ̂ obeying the anticommutation relations

Γµ̂ Γν̂ + Γν̂ Γµ̂ = −2 gµ̂ν̂ 12n+2 with µ̂, ν̂ = 1, . . . , 2n+ 4 . (3.36)

The gamma-matrices in (3.36) may be decomposed as

{
Γµ̂
}

=
{

Γµ, Γy1 , Γȳ1 , Γy2 , Γȳ2
}

(3.37)

where

Γµ = γµ ⊗ 12 ⊗ 12 , (3.38)

and γµ = −(γµ)† are the 2n×2n matrices which locally generate the Clifford algebra bundle

over M and which obey the anticommutation relations

γµ γν + γν γµ = −2 gµν 12n with µ, ν = 1, . . . , 2n . (3.39)

The spherical components are given by

Γy1 = γ ⊗ γy1 ⊗ 12 , Γȳ1 = γ ⊗ γ ȳ1 ⊗ 12 , (3.40)

Γy2 = γ ⊗ σ3 ⊗ γy2 , Γȳ2 = γ ⊗ σ3 ⊗ γȳ2 , (3.41)

where

γy` = − 1

R`
(1 + y`ȳ`) σ+ and γ ȳ` =

1

R`
(1 + y`ȳ`) σ− (3.42)

are the Clifford algebra generators over CP 1
(`) for ` = 1, 2, with the constant sl(2,C) gen-

erators given by (2.9), (2.10). The chirality operator over M is

γ =
i n

(2n)!
√
g
εµ1···µ2n γ

µ1 · · · γµ2n with (γ)2 = 12n and γ γµ = −γµ γ .
(3.43)

With this set-up we may now write the equivariant gauge potential given by (2.22)–
(2.27) as the graded connection

Â := Γµ̂Aµ̂ = ΓµAµ + Γy1 Ay1 + Γȳ1 Aȳ1 + Γy2 Ay2 + Γȳ2 Aȳ2

= γµ
(
A(m1,m2)

)
µ
⊗ 12 ⊗ 12 +

1

R1

(
φ

(1)
(m1,m2)

)
γ ⊗ σ− ⊗ 12 +

1

R1

(
φ

(1)
(m1,m2)

)†
γ ⊗ σ+ ⊗ 12

+
1

R2

(
φ

(2)
(m1,m2)

)
γ ⊗ σ3 ⊗ σ− +

1

R2

(
φ

(2)
(m1, m2)

)†
γ ⊗ σ3 ⊗ σ+

+ γ ⊗
(
γȳ1
(
a(m1)

)
ȳ1

+ γy1
(
a(m1)

)
y1

)
⊗ 12 + γ ⊗ σ3 ⊗

(
γȳ2

(
a(m2)

)
ȳ2

+ γy2
(
a(m2)

)
y2

)
,

(3.44)
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where

γȳ`
(
a(m`)

)
ȳ`

+ γy`
(
a(m`)

)
y`

=
1

R`
(1 + y`ȳ`)

((
a(m`)

)
ȳ`
σ− −

(
a(m`)

)
y`
σ+

)

for ` = 1, 2 . (3.45)

As desired, the zero-form components in (3.44) involving φ
(`)
(m1,m2) are independent of the

coordinates (y`, ȳ`) ∈ CP 1
(`) and they anticommute with the one-form components involving

A(m1,m2) due to their couplings with the chirality operator (3.43). From (2.41)–(2.47) the

curvature of the graded connection (3.44) is found to be

F̂ := 1
4

[
Γµ̂ , Γν̂

]
Fµ̂ν̂

= 1
4

[
γµ , γν

] (
F (m1 ,m2)

)
µν
⊗ 12 ⊗ 12

− 1

R1
γ
(
γµDµφ

(1)
(m1 ,m2)

)
⊗ σ− ⊗ 12 +

1

R1
γ
(
γµDµφ

(1)
(m1 ,m2)

)† ⊗ σ+ ⊗ 12

− 1

R2
γ
(
γµDµφ

(2)
(m1 ,m2)

)
⊗ σ3 ⊗ σ− +

1

R2
γ
(
γµDµφ

(2)
(m1 ,m2)

)† ⊗ σ3 ⊗ σ+

+
1

2R2
1

(
Υ

(1)
(m1,m2)

−
[
φ

(1)
(m1 ,m2)

,
(
φ

(1)
(m1,m2)

)†])
12n ⊗ σ3 ⊗ 12

+
1

2R2
2

(
Υ

(2)
(m1,m2) −

[
φ

(2)
(m1 ,m2) ,

(
φ

(2)
(m1,m2)

)†])
12n ⊗ 12 ⊗ σ3

+
1

R1 R2

[
φ

(1)
(m1 ,m2) , φ

(2)
(m1 ,m2)

]
12n ⊗ σ− ⊗ σ−

+
1

R1 R2

[
φ

(1)
(m1 ,m2) , φ

(2)
(m1 ,m2)

]†
12n ⊗ σ+ ⊗ σ+

+
1

R1 R2

[
φ

(1)
(m1 ,m2) ,

(
φ

(2)
(m1 ,m2)

)†]
12n ⊗ σ− ⊗ σ+

+
1

R1 R2

[
φ

(1)
(m1 ,m2) ,

(
φ

(2)
(m1 ,m2)

)†]†
12n ⊗ σ+ ⊗ σ− (3.46)

where F (m1,m2) := dA(m1,m2) +A(m1,m2) ∧A(m1,m2) = 1
2

(
F (m1,m2)

)
µν

dxµ ∧ dxν .

The graded curvature (3.46) is completely independent of the spherical coordinates.

Using (3.46) and standard gamma-matrix trace formulas [18], it is possible to recast the

dimensionally reduced Yang-Mills action functional (2.50) in the compact form

SYM =
π2R2

1 R
2
2

2n

∫

M
d2nx

√
g trk×k TrC2n+2 F̂2 , (3.47)

where the trace TrC2n+2 is taken over the representation space of (3.36) and may be thought

of as an “integral” over the Clifford algebra. Thus the entire equivariant gauge theory on

M×CP 1
(1)×CP 1

(2) may be elegantly rewritten as an ordinary Yang-Mills gauge theory of

graded connections on the corresponding quiver bundle over M .

4. Noncommutative instantons and quiver vortices

We will now proceed to the construction of explicit equivariant instanton solutions. We will

build both BPS and non-BPS configurations of the Yang-Mills equations on the noncom-
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mutative space R2n
θ ×CP 1×CP 1. We then describe some general properties of the moduli

space of noncommutative instantons in this instance.

4.1 BPS equations

The equations of motion which follow from varying the Yang-Mills lagrangian (2.48) on

the Kähler manifold M×CP 1×CP 1 are given by

1√
ĝ
∂µ̂
(√

ĝ F µ̂ν̂
)

+
[
Aµ̂ , F µ̂ν̂

]
= 0 . (4.1)

The BPS configurations which satisfy (4.1) are provided by solutions of the DUY equa-

tions [11]

∗Ω ∧ F = 0 and F2,0 = 0 = F0,2 , (4.2)

where ∗ is the Hodge duality operator and F = F 2,0 + F1,1 + F0,2 is the Kähler decom-

position of the gauge field strength. In the local complex coordinates (za, y1, y2) these

equations take the form

gab̄ Fzaz̄b̄ + gy1ȳ1 Fy1ȳ1 + gy2ȳ2 Fy2ȳ2 = 0 , (4.3)

Fz̄āz̄b̄ = 0 , (4.4)

Fz̄āȳ1
= 0 = Fz̄āȳ2

, (4.5)

Fȳ1ȳ2 = 0 , (4.6)

along with their complex conjugates for a, b = 1, . . . , n.

In terms of the equivariant decomposition (2.41)–(2.47), the DUY equations read

gab̄ F iαab̄ =
1

2R2
1

[
m1 − 2i+

(
φ

(1)
iα

)†
φ

(1)
iα − φ

(1)
i+1α

(
φ

(1)
i+1α

)† ]

+
1

2R2
2

[
m2 − 2α+

(
φ

(2)
iα

)†
φ

(2)
iα − φ

(2)
i α+1

(
φ

(2)
i α+1

)†]
(4.7)

and

F iαāb̄ = 0 , (4.8)

∂āφ
(1)
i+1α +Aiαā φ

(1)
i+1α − φ

(1)
i+1αA

i+1α
ā = 0 , (4.9)

∂āφ
(2)
i α+1 +Aiαā φ

(2)
i α+1 − φ

(2)
i α+1 A

i α+1
ā = 0 , (4.10)

φ
(1)
i+1α φ

(2)
i+1α+1 − φ

(2)
i α+1 φ

(1)
i+1α+1 = 0 , (4.11)

along with their complex conjugates. Eq. (4.7) gives hermitean conditions on the curvatures

of Ekiα →M , while (4.8) implies that Ekiα are holomorphic vector bundles with connections

Aiα. The conditions (4.9) and (4.10) then mean that the bundle maps on the quiver

bundle (2.12) are holomorphic. Eq. (4.11) imposes the relations R(m1,m2) on the quiver

bundle. Note that the analogous non-holomorphic relations, specified by the vanishing

of (2.47), do not arise as BPS conditions.
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The BPS energies may be computed by noting that the action functional (2.50) eval-

uated on equivariant connections A of the bundle E → M×CP 1×CP 1 may be written

as [15]

SYM =
1

4

∫

M×CP 1×CP 1

d2n+4x
√
ĝ trk×k

(
Ωµ̂ν̂ Fµ̂ν̂

)2 − 2π2 Ch2(E) , (4.12)

where

Ch2(E) = − 1

8π2

∫

M×CP 1×CP 1

Ωn

n!
∧ trk×k F ∧ F (4.13)

is a Chern-Weil topological invariant of E . Eq. (4.12) shows that the Yang-Mills action is
bounded from below as SYM ≥ SBPS := −2π2 Ch2(E), with equality precisely when the
DUY equations (4.2) are satisfied. By substituting in (2.5) and the equivariant decompo-
sition (2.41)–(2.47), after integration over CP 1×CP 1 one finds

SBPS = 2π2
m1∑

i=0

m2∑

α=0

{
volM

[
(m1 − 2i) (m2 − 2α) kiα

+4
(
R2

2 (m1 − 2i) +R2
1 (m2 − 2α)

)
deg Ekiα

]
− 64π2R2

1 R
2
2 Ch2(Ekiα)

+

∫

M

d2nx
√
g trkiα×kiα

[(
φ

(1)
i+1 α+1

)† (
φ

(2)
i α+1

)†
φ

(1)
i+1α φ

(2)
i+1 α+1 −

(
φ

(1)
iα

)†
φ

(1)
iα

(
φ

(2)
i α+1

)†
φ

(2)
i α+1

+
(
φ

(1)
i+1α

)†
φ

(1)
i+1α+1

(
φ

(2)
i+1α+1

)†
φ

(2)
i α+1 − φ

(1)
i+1α

(
φ

(1)
i+1α

)† (
φ

(2)
iα

)†
φ

(2)
iα

]}
, (4.14)

where volM =
∫
M ωn/n! is the volume of the Kähler manifold M and

deg Ekiα =
i

volM

∫

M

ωn−1

(n− 1)!
∧ trkiα×kiα F

iα (4.15)

is the degree of the rank kiα bundle Ekiα →M .

To cast these equations on the noncommutative space M = R2n
θ , we introduce the

operators

Xiα
a := Aiαa + θab̄ z̄

b̄ and X iα
ā := Aiαā + θāb z

b . (4.16)

In terms of these operators the antiholomorphic bi-fundamental covariant derivatives take

the form

Dāφ
(1)
i+1α = Xiα

ā φ
(1)
i+1α−φ

(1)
i+1αX

i+1α
ā and Dāφ

(2)
i α+1 = Xiα

ā φ
(2)
i α+1−φ

(2)
i α+1 X

i α+1
ā ,

(4.17)

while the components of the field strength tensor become

F iαab̄ =
[
Xiα
a , Xiα

b̄

]
+ θab̄ , F iαāb̄ =

[
Xiα
ā , Xiα

b̄

]
and F iαab =

[
Xiα
a , Xiα

b

]
. (4.18)

– 22 –



J
H
E
P
0
9
(
2
0
0
6
)
0
5
4

The noncommutative DUY equations (without the complex conjugates) then read

δab̄
([
Xiα
a , Xiα

b̄

]
+ θab̄

)
=

1

2R2
1

[
m1 − 2i+

(
φ

(1)
iα

)†
φ

(1)
iα − φ

(1)
i+1α

(
φ

(1)
i+1α

)† ]
(4.19)

+
1

2R2
2

[
m2 − 2α+

(
φ

(2)
iα

)†
φ

(2)
iα − φ

(2)
i α+1

(
φ

(2)
i α+1

)†]
,

[
Xiα
ā , Xiα

b̄

]
= 0 , (4.20)

Xiα
ā φ

(1)
i+1α − φ

(1)
i+1αX

i+1α
ā = 0 , (4.21)

Xiα
ā φ

(2)
i α+1 − φ

(2)
i α+1 X

i α+1
ā = 0 , (4.22)

φ
(1)
i+1α φ

(2)
i+1α+1 − φ

(2)
i α+1 φ

(1)
i+1α+1 = 0 . (4.23)

4.2 Examples

Before proceeding with a more general analysis, we will provide some illustration of the

meaning of the quiver vortex equations (4.7)–(4.11) through special cases and limiting

solutions.

Chain vortex equations. Consider a holomorphic chain (3.24) with (m1,m2) = (m, 0).

Its equations, obtainable from (4.7)–(4.11) by taking φ
(2)
i α+1 = 0 in the ansatz for A and F ,

read

gab̄ F iab̄ =
1

2R2
(m− 2i+ φ†i φi − φi+1 φ

†
i+1) , F iāb̄ = 0 , (4.24)

∂̄āφi+1 + Aiā φi+1 − φi+1 A
i+1
ā = 0 for i = 0, 1, . . . ,m , (4.25)

where φi := φ
(1)
i 0 , Ai := Ai0, F i := F i0 and R = R1. Noncommutative chain vortex

configurations solving (4.24) and (4.25) on M = R2n
θ were constructed in [18].

Holomorphic triples. For m = 1 the holomorphic chain (3.24) reduces to a holomorphic

triple (E1, E2, φ) [12] described by the equations

gab̄ F 0
ab̄ = +

1

2R2
(1− φφ†) , F 0

āb̄ = 0 , (4.26)

gab̄ F 1
ab̄ = − 1

2R2
(1− φ†φ) , F 1

āb̄ = 0 , (4.27)

∂̄āφ + A0
ā φ − φA1

ā = 0 . (4.28)

Solutions of (4.26)–(4.28) for M = R2n
θ and their D-brane interpretation were presented

in [16, 17].

Four-dimensional case. For dimRM = 4, k0 = k1 = r and φ = 1r, we infer from (4.28)

that A0 = A1, hence both (4.26) and (4.27) simplify to the self-dual Yang-Mills equa-

tions on M . In the case of M = R4
θ their solutions are noncommutative instantons (see

e.g. [22, 23] and references therein). In string theory they are interpreted as states of

noncommutative D-branes (see e.g. [24] and references therein). On the other hand, when

k0 = k1 = 1 and φ is non-constant eqs. (4.26)–(4.28) reduce to the perturbed abelian
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Seiberg-Witten monopole equations [25]. For M = R4
θ one encounters the noncommutative

U+(1)×U−(1) Seiberg-Witten monopole equations studied in [26].

Vortices in two dimensions. For dimRM = 2 and k0 = k1 = 1, the set (4.26)–(4.28)

coincides with the standard vortex equations, whose solutions on M = R2
θ were considered

e.g. in [27].

Quiver Toda equations. Let us investigate the equations (4.7)–(4.11) in the limit

R1, R2 → ∞ which decompactifies the spherical parts of our Kähler manifold M×CP 1×
CP 1. With the redefinitions φ

(`)
iα → R` φ

(`)
iα for i = 0, 1, . . . ,m1 and α = 0, 1, . . . ,m2, the

quiver vortex equations then descend to the quiver Toda equations

2gab̄ F iαab̄ =
(
φ

(1)
iα

)†
φ

(1)
iα − φ

(1)
i+1α

(
φ

(1)
i+1α

)†
+
(
φ

(2)
iα

)†
φ

(2)
iα − φ

(2)
i α+1

(
φ

(2)
i α+1

)†
,(4.29)

F iαāb̄ = 0 , (4.30)

∂āφ
(1)
i+1α +Aiαā φ

(1)
i+1α − φ

(1)
i+1αA

i+1α
ā = 0 , (4.31)

∂āφ
(2)
i α+1 +Aiαā φ

(2)
i α+1 − φ

(2)
i α+1A

i α+1
ā = 0 , (4.32)

φ
(1)
i+1α φ

(2)
i+1α+1 − φ

(2)
i α+1 φ

(1)
i+1α+1 = 0 . (4.33)

In this limit the induced quiver gauge theory onM is independent of the additional spherical

dimensions. In the case φ
(2)
iα = 0 ∀i, α and φi := φ

(1)
i 0 we arrive at

2gab̄ F iab̄ = φ†i φi − φi+1 φ
†
i+1 , F iāb̄ = 0 , ∂̄āφi+1 + Aiā φi+1 − φi+1 A

i+1
ā = 0 ,

(4.34)

which may be called the holomorphic chain Toda equations on the Kähler manifold M .

Symmetric instantons on CP 1×CP 1. A somewhat opposite limit to the decom-

pactification limit above comes from choosing the vacuum solution for generic monopole

charges (m1,m2) on M×CP 1×CP 1. Let us set Aiα = 0 in (2.23), φ
(1)
i+1α and φ

(2)
i α+1 to

constant matrices in (2.24)–(2.27), and F iα = 0 in (2.30). Then the field strength com-

ponents (2.31)–(2.34) are identically zero, but (2.35)–(2.38) are generically non-vanishing.

The components (2.41)–(2.43) vanish, while (2.44)–(2.47) are non-vanishing and give the

components of the gauge fields on CP 1×CP 1. The BPS equations (4.8)–(4.10) are iden-

tically satisfied in this case, while eqs. (4.7) and (4.11) should be solved with constant

matrices φ
(`)
iα . The simplest choice is square matrices with (m1,m2) = (1, 1). The BPS

equations (4.7) and (4.11) are respectively equivalent in this case to the equations

F iα,iαy1ȳ1
+F iα,iαy2ȳ2

= 0 ,

F i+1α+1,iα
y1y2

= 0 = F iα,i+1α+1
ȳ1ȳ2

. (4.35)

Furthermore, F i α+1,i+1α
y1ȳ2

is given by (2.47). The equations (4.35) give SU(2)×SU(2)-

equivariant solutions of the self-dual Yang-Mills equations on CP 1×CP 1 which are vacuum

BPS solutions of the original DUY equations. These solutions have non-zero energy, and

the entire structure of these non-abelian instantons on CP 1×CP 1 is reduced to equations

for finite-dimensional matrices from our equivariant fields.
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4.3 Finite energy solutions

Let us fix monopole charges m1,m2 > 0 and an arbitrary integer 0 < r ≤ k. Consider the

ansatz

Xiα
a = θab̄ TNiα z̄

b̄ T †Niα and X iα
ā = θāb TNiα z

b T †Niα , (4.36)

φ
(1)
i+1α = λ

(1)
i+1α TNiα T

†
Ni+1α

and
(
φ

(1)
i+1α

)†
= λ̄

(1)
i+1α TNi+1α

T †Niα , (4.37)

φ
(2)
i α+1 = λ

(2)
i α+1 TNiα T

†
Ni α+1

and
(
φ

(2)
i α+1

)†
= λ̄

(2)
i α+1 TNi α+1

T †Niα , (4.38)

where λ
(1)
iα , λ

(2)
iα ∈ C are some constants with λ

(1)
0α = 0 = λ

(1)
m1+1α and λ

(2)
i0 = 0 = λ

(2)
im2+1

for i = 0, 1, . . . ,m1, α = 0, 1, . . . ,m2. Denoting by H the n-oscillator Fock space as before,

the Toeplitz operators

TNiα : Cr ⊗H −→ V kiα ⊗H (4.39)

are partial isometries described by rectangular kiα×r matrices (with values in End H)

possessing the properties

T †Niα TNiα = 1r while TNiα T
†
Niα

= 1kiα − PNiα , (4.40)

where PNiα is a hermitean projector of finite rank Niα on the Fock space V kiα ⊗H so that

P 2
Niα = PNiα = P †Niα and TrV kiα

⊗H PNiα = Niα . (4.41)

It follows that

ker TNiα = {0} but kerT †Niα = imPNiα
∼= CNiα . (4.42)

For the ansatz (4.36)–(4.38) the equations (4.20)–(4.23) are satisfied along with the

non-holomorphic relations

(
φ

(2)
iα

)†
φ

(1)
i+1α−1 − φ

(1)
i+1α

(
φ

(2)
i+1α

)†
= 0 , (4.43)

or equivalently in terms of graded connections one has the commutativity condition
[
φ

(1)
(m1,m2) ,

(
φ

(2)
(m1,m2)

)†]
= 0 . (4.44)

The non-vanishing gauge field strength components are given by

F iαab̄ = θab̄ PNiα =
1

2 θa
δab̄ PNiα . (4.45)

It follows that our ansatz determines a finite-dimensional representation of the quiver

with relations (Q(m1,m2) , R(m1,m2)). The projectors PNiα give representations of the trivial

path idempotents eiα and project the infinite-dimensional Fock module V ⊗ H over the

path algebra A(m1,m2), given by the noncommutative quiver bundle, onto finite-dimensional

vector spaces PNiα · (V ⊗H) = kerT †Niα . This module will be denoted as

T :=

m1⊕

i=0

m2⊕

α=0

kerT †Niα (4.46)
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with dimension vector

~N := ~kT =
(
Niα

)i=0,1,...,m1

α=0,1,...,m2
. (4.47)

These dimensions correspond to the degrees of the corresponding noncommutative sub-

bundles determined by (4.45).

The noncommutative Yang-Mills action for the ansatz (4.36)–(4.38) can be evaluated

by using (2.50), (2.58), (4.23), (4.40), (4.43) and (4.45) to get

SYM = −πR2
1 R

2
2 Pf(2π θ)

m1∑

i=0

m2∑

α=0

TrV kiα
⊗H

{
tr2n×2n

(
θ−2
)
PNiα

− 1

2R4
1

[
(m1 − 2i) 1kiα +

(∣∣λ(1)
iα

∣∣2 −
∣∣λ(1)
i+1α

∣∣2
) (

1kiα − PNiα
)]2

− 1

2R4
2

[
(m2 − 2α) 1kiα +

(∣∣λ(2)
iα

∣∣2 −
∣∣λ(2)
i α+1

∣∣2
) (

1kiα − PNiα
)]2

}
. (4.48)

Requiring that SYM <∞ yields a pair of equations determining the moduli of the complex

coefficients λ
(1)
iα and λ

(2)
iα respectively. Up to a phase they are thus uniquely fixed, by

demanding that the ansatz (4.36)–(4.38) be a finite energy field configuration, as

∣∣λ(1)
iα

∣∣2 = i (m1 − i+ 1) and
∣∣λ(2)
iα

∣∣2 = α (m2 − α+ 1) . (4.49)

The corresponding finite action (4.48) then reads

SYM = πR2
1 R

2
2 Pf(2π θ)

⌊
m1
2

⌋
∑

i=0

⌊
m2
2

⌋
∑

α=0

(
Niα +Nm1−im2−α +Nm1−i α +Nim2−α

)

×
[

(m1 − 2i)2

2R4
1

+
(m2 − 2α)2

2R4
2

− tr2n×2n

(
θ−2
) ]

, (4.50)

where we have split the sum over nodes of the quiver Q(m1,m2) into contributions from Dirac

monopoles and antimonopoles which each have the same Yang-Mills energies on the spheres

CP 1
(1) and CP 1

(2). This splitting will be the crux later on for the physical interpretation of

our instanton solutions.

Finally, let us check that the Yang-Mills equations on R2n
θ ×CP 1

(1)×CP 1
(2) are indeed

satisfied by our choice of ansatz. We have

Aa − θab̄ z̄b̄ =

m1∑

i=0

m2∑

α=0

Xiα
a ⊗Πiα = θab̄

m1∑

i=0

m2∑

α=0

TNiα z̄
b̄ T †Niα ⊗Πiα , (4.51)

Aā − θāb zb =

m1∑

i=0

m2∑

α=0

Xiα
ā ⊗Πiα = θāb

m1∑

i=0

m2∑

α=0

TNiα z
b T †Niα ⊗Πiα , (4.52)

while Ay1 , Ay2 , Aȳ1 and Aȳ2 are given by (3.20)–(3.23). For our ansatz the field strength
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tensor has components

Fab̄ = θab̄

m1∑

i=0

m2∑

α=0

PNiα ⊗Πiα , (4.53)

Fy1ȳ1 =
1

(1 + y1ȳ1)2

m1∑

i=0

m2∑

α=0

(m1 − 2i) PNiα ⊗Πiα , (4.54)

Fy2ȳ2 =
1

(1 + y2ȳ2)2

m1∑

i=0

m2∑

α=0

(m2 − 2α) PNiα ⊗Πiα , (4.55)

where we have imposed the finite energy conditions (4.49). One can now easily check in

the same way as in [18] that the Yang-Mills equations (4.1) are satisfied.

4.4 BPS solutions

The configurations described above are generically non-BPS solutions of the Yang-Mills

equations on R2n
θ ×CP 1

(1)×CP 1
(2). Let us now describe the structure of the BPS states.

Substituting (4.37), (4.38) and (4.45) into the remaining DUY equations (4.19) and using

the finite energy constraints (4.49), one finds the BPS conditions

n∑

a=1

1

θa
=
m1 − 2i

2R2
1

+
m2 − 2α

2R2
2

(4.56)

for all i, α with Niα > 0. Generically, these conditions are incompatible with one an-

other unless only one of the degrees, say N00 for definiteness, is non-zero. Then the

solution (4.36)–(4.38) is truncated by setting TNiα = 1r for all (i, α) 6= (0, 0) which cor-

respond to vacuum gauge potentials Aiα = 0 with trivial bundle maps φ
(`)
iα acting as

multiplication by the complex numbers λ
(`)
iα satisfying (4.49). The BPS solutions are also

restricted to the special class of quiver representations (2.6) having dimension vectors ~k

with kiα = r ∀(i, α) 6= (0, 0) and k00 + m1 m2 r = k. As we will see in section 4.5, these

quiver representations are essentially generic and hence BPS solutions always exist. The

corresponding BPS energy (4.50) is proportional to the degree N00 and corresponds to the

topological invariants displayed in (4.14), with the remaining terms vanishing due to the

non-holomorphic relations (4.43).

Notice that there are special points in the quiver vortex moduli space where the generic

BPS gauge symmetry U(k00)×U(r)m1 m2 is enhanced. For example, if R1 = R2 and p is

any fixed integer with 0 ≤ p ≤ min(m1,m2), then a BPS solution with Ni p−i > 0 for

i = 0, 1, . . . , p is possible. This solution corresponds to a holomorphic chain along the

diagonal vertices (i, α) of the quiver Q(m1 ,m2) with i + α = p. The corresponding BPS

energies depend on p and are minimized precisely at p = 0.

The BPS solution having Niα > 0 may be characterized in quiver gauge theory as Niα

copies of the simple Schur representation L iα for each i = 0, 1, . . . ,m1, α = 0, 1, . . . ,m2.

This is the Q(m1,m2)-module given by a one-dimensional vector space at vertex (m1 −
2i,m2 − 2α) with all maps equal to 0, i.e. the A(m1,m2)-module with (L iα)jβ = δij δαβ C
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and dimension vector (~kL iα)jβ = δij δαβ . The generic non-BPS configurations give modules

T which are extensions of the BPS modules (L iα)⊕Niα [18] describing noncommutative

quiver vortex configurations.

4.5 Instanton moduli space

We will now describe the moduli space of the generic (non-BPS) solutions that we have

obtained. The equations of motion are fixed first of all by the positive integers n and k.

The condition of G-equivariance then specifies a quiver representation (2.6) with dimension

vector ~k. The Yang-Mills action (4.50) is independent of ~k, and later on we will find that

in fact no physical quantities depend on the particular choice of quiver representation. As

we now proceed to demonstrate, this independence is due to the triviality of the moduli

space of Q(m1,m2)-modules.

Let us fix a dimension vector ~k. Then with the identifications V kiα
∼= Ckiα we can

regard the module (2.6) as an element in the space of quiver representations into V given

by

Rep
(
Q(m1,m2) , ~k

)
:=

m1⊕

i=0

m2⊕

α=0

(
Hom

(
Cki+1α , Ckiα

)
⊕Hom

(
Cki α+1 , Ckiα

))
(4.57)

with km1+1α := 0 =: kim2+1. This is the space of representations with fixed dimension

vector ~k. The set of representations of Q(m1,m2) into V satisfying the relations R(m1 ,m2) is

an affine variety inside the space (4.57).

The gauge group of the corresponding quiver gauge theory is given by (2.7). As in

section 2.2, it is useful to work instead with the complexified gauge group

G(~k ) =

m1∏

i=0

m2∏

α=0

GL(kiα,C) . (4.58)

Suppose that V , V ′ ∈ Rep(Q(m1,m2), ~k ) and f : V → V ′ is an isomorphism of quiver rep-

resentations. Then f can be naturally regarded as an element of the gauge group (4.58).

Conversely, any element f = {fiα ∈ GL(kiα,C)}0≤i≤m1 ,0≤α≤m2 ∈ G(~k ) acts on V ∈
Rep(Q(m1 ,m2), ~k ) in the same fashion. It follows that the gauge group G(~k ) acts on

Rep(Q(m1 ,m2), ~k ) and two quiver representations are isomorphic if and only if they lie

in the same orbit of G(~k ). Thus there is a one-to-one correspondence between G(~k )-orbits

in Rep(Q(m1 ,m2), ~k ) and isomorphism classes of Q(m1,m2)-modules with dimension vector
~k.

This set defines the moduli space M(Q(m1 ,m2), ~k ) of quiver representations. It has

virtual dimension [28]

dim
[
M
(
Q(m1,m2) , ~k

)]vir
= 1 + dim Rep

(
Q(m1 ,m2) , ~k

)
− dim G

(
~k
)

= 1−
m1∑

i=0

m2∑

α=0

kiα
(
kiα − ki+1α − ki α+1

)
. (4.59)
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Restricting to representations which satisfy the relations R(m1,m2) lowers (4.59) by
∑

i,α×
kiαki+1α+1. Representations with moduli space dimension greater than the virtual dimen-

sion can arise due to additional unbroken gauge symmetry, as described in section 4.4.

Schur representations, describing generic BPS states, are those modules for which the sta-

ble dimension equals the virtual dimension. Rigid representations carry no moduli and

have vanishing virtual dimension. As we now show, it is these latter Q(m1,m2)-modules

that parametrize our noncommutative quiver vortices.

The scalar subgroup C× ⊂ G(~k ) acts trivially on Rep(Q(m1 ,m2), ~k ), and we are left

with a free action of the projective gauge group PG(~k ) := G(~k )/C×. Since PG(~k ) is not

compact, we must use geometric invariant theory to obtain a quotient which is well-defined

as a projective variety [29]. The representation space X = Rep(Q(m1 ,m2), ~k ) is an affine

variety. Let C[X] denote the ring of polynomial functions on X. The PG(~k )-action on X

induces a PG(~k )-action on C[X] in the usual way by pull-back. Let C[X]PG(~k ) ⊂ C[X] be

the subalgebra of PG(~k )-invariant polynomials. Since the gauge group (4.58) is reductive,

the graded ring C[X]PG(~k ) is finitely generated and by the Gel’fand-Naimark theorem it

can be regarded as the polynomial ring of a complex projective affine variety X //PG(~k ).

This defines the desired moduli space

M
(
Q(m1,m2) , ~k

)
:= Rep

(
Q(m1,m2) , ~k

)
//PG(~k ) = Proj C

[
Rep

(
Q(m1,m2) , ~k

)]PG(~k )
.

(4.60)

Now since the quiver Q(m1 ,m2) has no oriented cycles, we may lexicographically order

its vertex set as Q
(0)
(m1,m2) = {1, 2, . . . , (m1 + 1) (m2 + 1)} and assume that the integer label

of the tail node of each arrow is smaller than that of the head node. For ζ ∈ C× we define

f ζ ∈ G(~k ) by ( f ζ)i = ζi 1ki ∈ GL(ki,C) for each i ∈ Q
(0)
(m1 ,m2). Then by considering

the action of f ζ on X = Rep(Q(m1 ,m2), ~k ) and on C[X]PG(~k ), one easily deduces that

C[X]PG(~k ) ∼= C. This means that the moduli space (4.60) is trivial,

M
(
Q(m1,m2) , ~k

)
= point , (4.61)

and all quiver representations are gauge equivalent.

Thus the only moduli of our solutions arise from the moduli space of noncommutative

solitons [30]. They are parametrized by the pair of monopole charges (m1,m2) and by the

dimension vector ~N of the quiver representation (4.46). The above argument again shows

that there are no extra moduli associated with the Q(m1 ,m2)-modules T . For each i, α we

let bliα = (baliα), liα = 1, . . . , Niα be the holomorphic components of fixed points in Cn, and

let |bliα〉 be the corresponding coherent states in the n-oscillator Fock space H. For the

projector PNiα in the solution of section 4.3 we may take the orthogonal projection of H
onto the linear span

⊕Niα
liα=1 C|bliα〉. Modulo the standard action of the noncommutative

gauge group U(H) ∼= U(∞), the moduli space of these projectors can be described as an

ideal I of the ring of polynomials C[z̄1, . . . , z̄n] in the noncommutative coordinates acting

on the vacuum state |0, . . . , 0〉. The zero set of I gives the locations of the instantons in

Cn and the codimension of I in C[z̄1, . . . , z̄n] is the number Niα of instantons. The moduli

space of partial isometries TNiα thereby coincides with the Hilbert scheme HilbNiα(Cn)
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of Niα points in Cn [30], and thus the total moduli space of the solutions constructed in

section 4.3 is

Mn
(m1,m2)(

~N ) =

m1∏

i=0

m2∏

α=0

HilbNiα(Cn) . (4.62)

The quiver representation (4.46) thereby specifies the supports of the noncommutative

quiver vortices in R2n. Explicit forms for the Toeplitz operators TNiα corresponding to

specific points in (4.62) may be constructed exactly as in [18] by using the noncommutative

ABS construction. We will return to this point in the next section.

5. D-brane realizations

In this final section we will elucidate the physical interpretation of our solutions as par-

ticular configurations of branes and antibranes in Type IIA superstring theory. We will

first compute, in the original gauge theory on R2n
θ ×CP 1×CP 1, the topological charges of

the multi-instanton solutions constructed in section 4.3. This will make clear the D-brane

interpretation which we describe in detail. We then present two independent checks of the

proposed identification. Firstly, we work out the K-theory charges associated to the non-

commutative quiver vortices. Secondly, we compute the topological charge in the quiver

gauge theory arising after dimensional reduction to R2n
θ . While formally similar to the

construction of [18] in the case of holomorphic chains, the new feature of the higher rank

quiver is that all of these computations of D-brane charges agree only when one imposes

the appropriate relations derived earlier. The ensuing calculations thereby also provide a

nice physical realization of the quiver with relations (Q(m1 ,m2) , R(m1,m2)). Details of the

homological algebra techniques used in this section may be found in [21, 31].

5.1 Topological charges

Let us compute the topological charge of the configurations (4.36)–(4.41). The non-

vanishing components of the field strength tensor along R2n
θ are given by

F2a−1 2a = 2 i Faā = − i

θa

m1∑

i=0

m2∑

α=0

PNiα ⊗Πiα , (5.1)

while the non-vanishing spherical components can be written in terms of angular coordi-

nates on S2
(1)×S2

(2) as

Fϑ1ϕ1
= − i

sinϑ1

2

m1∑

i=0

m2∑

α=0

(m1 − 2i) PNiα ⊗Πiα , (5.2)

Fϑ2ϕ2
= − i

sinϑ2

2

m1∑

i=0

m2∑

α=0

(m2 − 2α) PNiα ⊗Πiα . (5.3)
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This gives

F12F34 · · · F2n−1 2n Fϑ1ϕ1
Fϑ2ϕ2

= (− i )n
sinϑ1 sinϑ2

4 Pf(θ)

( m1∑

i=0

m2∑

α=0

PNiα ⊗Πiα

)n

×
( m1∑

j1=0

m2∑

γ1=0

(m1 − 2j1) PNj1γ1
⊗Πj1γ1

)( m1∑

j2=0

m2∑

γ2=0

(m2 − 2j2) PNj2γ2
⊗Πj2γ2

)

= (− i )n
sinϑ1 sinϑ2

4 Pf(θ)

m1∑

i=0

m2∑

α=0

(m1 − 2i) (m2 − 2α) PNiα ⊗Πiα . (5.4)

The instanton charge is then given by the (n+ 2)-th Chern number

Q :=
1

(n+ 2)!

( i

2π

)n+2
Pf(2π θ)

∫

S2
(1)
×S2

(2)

TrV⊗H F ∧ · · · ∧ F︸ ︷︷ ︸
n+2

. (5.5)

The calculation now proceeds exactly as in [18] and one finds

Q =

m1∑

i=0

m2∑

α=0

(m1 − 2i) (m2 − 2α)Niα . (5.6)

For the BPS configurations described in section 4.4 the energy functional (4.50) is propor-

tional to the topological charge (5.6), as expected for a BPS instanton solution.

As we did in (4.50), let us rewrite (5.6) in the form

Q =

⌊
m1
2

⌋
∑

i=0

⌊
m2
2

⌋
∑

α=0

(m1− 2i) (m2− 2α)
[(
Ni α +Nm1−im2−α

)
−
(
Nm1−i α +Nim2−α

)]
. (5.7)

This formula suggests that one should regard the nodes of the quiver bundle (2.12) which

live in the upper right and lower left quadrants as branes (with positive charges), and

those in the upper left and lower right quadrants as antibranes (with negative charges).

The branes and antibranes are realized as a quiver vortex configuration on R2n
θ of D0-branes

in a system of k =
∑

i,α kiα D(2n)-branes. The twisting of the Chan-Paton bundles by the

Dirac multi-monopole bundles over the CP 1 factors is crucial in this construction. This

system is equivalent to a configuration of spherical D2-branes, wrapping CP 1
(`) for ` = 1, 2,

inside a system of D(2n+4)-branes on R2n
θ ×CP 1

(1)×CP 1
(2). The monopole flux through each

CP 1 factor stabilizes the D2-branes. After equivariant dimensional reduction, the D(2n)-

branes which carry negative magnetic flux on their worldvolume have opposite orientation

with respect to those which carry positive magnetic flux, and are thus antibranes. The

bi-fundamental scalar fields φ
(`)
iα correspond to massless open string excitations between

nearest neighbour D-branes on the quiver Q(m1,m2). The relations R(m1,m2) of the quiver,

given by (2.13), imply that there is a unique Higgs excitation marginally binding any

given pair of D-branes. As will become apparent in section 5.3, only those brane-antibrane

pairs whose total monopole charge vanishes are actually unstable and possess tachyonic
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excitations causing them to annihilate to the vacuum. Other pairs are stabilized by the non-

trivial monopole bundles over the two CP 1 factors which act as a source of flux stabilization.

This interpretation is consistent with the form of the energy (4.50) of our solutions, and

the stability of the brane configuration is consistent with the structure of BPS solutions

found in section 4.4. In the remainder of this section we will justify and expand on these

statements.

5.2 Symmetric spinors

The standard explicit realization of the basic partial isometry operators TNiα describing

the noncommutative multi-instanton solutions is provided by a G-equivariant version of

the (noncommutative) Atiyah-Bott-Shapiro (ABS) construction of tachyon field configu-

rations [18], where G = SU(2)×SU(2). Let us now describe some general aspects of this

construction. We begin with the equivariant excision theorem [32] which computes the

G-equivariant K-theory of the space M×CP 1
(1)×CP 1

(2) through the isomorphism

KG

(
M×CP 1

(1)×CP 1
(2)

)
= KG(G×HM) = KH(M) . (5.8)

Since the closed subgroup H = U(1)×U(1) ⊂ G acts trivially on M , from the Künneth

theorem we arrive at

KG

(
M×CP 1

(1)×CP 1
(2)

)
= K(M)⊗R

(1)
U(1) ⊗R

(2)
U(1) , (5.9)

where RU(1) is the representation ring of the group U(1). Setting M = point in this

isomorphism and using (2.14), we may describe this representation ring as the formal

Laurent polynomial ring RH = KG(CP 1
(1)×CP 1

(2)) = Z[L(1),L∨(1)]⊗Z[L(2),L∨(2)]. Then (5.9)

is just the generalization of the isomorphism described in section 2.2 to the case of virtual

bundles.

In the case of main interest, M = R2n, we can make the above isomorphism very ex-

plicit. Let RSpinH(2n) be the Grothendieck group of isomorphism classes of finite-dimensio-

nal Z2-graded H×C`2n-modules, where C`2n := C`(R2n) denotes the Clifford algebra of

the vector space R2n with the canonical inner product δµν . Extending the standard ABS

construction [33], we may then compute the H-equivariant K-theory KH(R2n) with H act-

ing trivially on R2n and commuting with the Clifford action. Any such H×C`2n-module is

a direct sum of products of an H-module and a spinor module, and hence

RSpinH(2n) = RSpin(2n) ⊗R
(1)
U(1) ⊗R

(2)
U(1) . (5.10)

The first factor can be treated by the standard ABS construction and yields the ordinary

K-theory group K(R2n). Therefore, our equivariant K-theory group reduces to

KH

(
R2n

)
= K

(
R2n

)
⊗R

(1)
U(1) ⊗R

(2)
U(1) . (5.11)

In the present context of the equivariant ABS construction, this isomorphism may be

described in terms of the isotopical decomposition of the spinor module

∆ 2n := ∆
(
R2n

)
=

m1⊕

i=0

m2⊕

α=0

∆iα ⊗ S(1)
m1−2i ⊗ S

(2)
m2−2α (5.12)
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obtained by restricting ∆ 2n to representations of U(1)×U(1) ⊂ Spin(2n) ⊂ C`2n. Let

ι : H ↪→ G be the inclusion map. It induces a restriction map from representations of G

to representations of H, and hence a homomorphism of representation rings

ι∗ : RG −→ RH . (5.13)

The ∆iα’s in (5.12) are then the corresponding multiplicity spaces

∆iα = HomH

(
ι∗∆ 2n , S

(1)
m1−2i ⊗ S

(2)
m2−2α

)
. (5.14)

To compute the spaces (5.14) explicitly, consider the homomorphism of representation

rings

ι∗ : RH −→ RG (5.15)

induced by the induction map from representations of H to representations of G. On

generators it is given by the space of sections

ι∗
(
S(1)
p1
⊗ S(2)

p2

)
= Γ

(
Lp1

(1) ⊗L
p2

(2)

)
(5.16)

of the homogeneous line bundle Lp1

(1)⊗L
p2

(2) = G×H
(
S

(1)
p1 ⊗S(2)

p2

)
over the base space G/H ∼=

CP 1
(1)×CP 1

(2), with G-action induced by the standard action on the base. By Frobenius

reciprocity we have dim HomG(V , ι∗W ) = dim HomH(ι∗V , W ) for V a representation

of G and W a representation of H. As a consequence we can identify the multiplicity

spaces (5.14) as

∆iα = HomG

(
∆ 2n , Γ

(
Lm1−2i

(1) ⊗Lm2−2α
(2)

))
. (5.17)

We may now calculate the isotopical decomposition (5.12) by using (5.17) to construct
the SU(2)×SU(2)-invariant dimensional reduction of spinors from R2n×CP 1×CP 1 to R2n.
To this end, we introduce the twisted Dirac operator on R2n×CP 1×CP 1 using the graded
connection formalism of section 3.4 to write the Zm1+1×Zm2+1-graded Clifford connection

D̂/ := Γµ̂Dµ̂ = γµDµ ⊗ 12 ⊗ 12+
(
φ

(1)
(m1,m2)

)
γ ⊗ γ ȳ1 βȳ1 ⊗ 12 −

(
φ

(1)
(m1,m2)

)†
γ ⊗ γy1 βy1 ⊗ 12

+
(
φ

(2)
(m1,m2)

)
γ ⊗ 12 ⊗ γ ȳ2 βȳ2 −

(
φ

(2)
(m1,m2)

)†
γ ⊗ 12 ⊗ γy2 βy2

+γ ⊗D/ (1)
CP 1 ⊗ 12 + γ ⊗ 12 ⊗D/ (2)

CP 1 (5.18)

where

D/
(`)
CP 1 := γy`

(
∂y` + ωy` +

(
a(m`)

)
y`

)
+ γȳ`

(
∂ȳ` + ωȳ` +

(
a(m`)

)
ȳ`

)
(5.19)

with ` = 1, 2, and ωy, ωȳ are the components of the Levi-Civita spin connection on the

tangent bundle of CP 1. The operator (5.18) acts on sections Ψ of the twisted spinor

bundle

S/ =

m1⊕

i=0

m2⊕

α=0

(Ekiα ⊗∆ 2n)⊗
(
Lm1−2i+1

(1)

Lm1−2i−1
(1)

)
⊗
(
Lm2−2α+1

(2)

Lm2−2α−1
(2)

)
(5.20)

over R2n×CP 1×CP 1, where Lp+1 ⊕ Lp−1 are the twisted spinor bundles of rank 2 over

the sphere CP 1. We are therefore interested in the product of the spinor module ∆ 2n ⊗
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∆ (CP 1) ⊗ ∆ (CP 1) with the fundamental representation (2.6) of the gauge group U(k)

broken as in (2.7).

The symmetric fermions on R2n that we are interested in correspond to SU(2)×SU(2)-

invariant spinors on R2n×CP 1×CP 1. They belong to the kernels ker(D/
(1)
CP 1)⊗ ker(D/

(2)
CP 1)

of the two Dirac operators (5.19) on CP 1. By using (3.15), (3.16) and (3.42) one can write

chiral decompositions of the Dirac operators (5.19) acting on (5.20) in the form

D/
(1)
CP 1 =

m1⊕

i=0

(
0 D/

(1) +
m1−2i

D/
(1)−
m1−2i 0

)
and D/

(2)
CP 1 =

m2⊕

α=0

(
0 D/

(2) +
m2−2α

D/
(2)−
m2−2α 0

)
, (5.21)

where

D/
(1) +
m1−2i = − 1

R2
1

[
(R2

1 + y1ȳ1) ∂y1 + 1
2 (m1 − 2i+ 1) ȳ1

]
, (5.22)

D/
(1)−
m1−2i =

1

R2
1

[
(R2

1 + y1ȳ1) ∂ȳ1 − 1
2 (m1 − 2i+ 1) y1

]
(5.23)

and analogously forD/
(2)±
m2−2α. The non-trivial kernels are naturally isomorphic to irreducible

SU(2)-modules [18] given by

kerD/ (`) +
p = {0} and kerD/ (`)−

p = V |p| for p < 0 ,

kerD/ (`) +
p = V p and kerD/ (`)−

p = {0} for p > 0 , (5.24)

with p = m1 − 2i for ` = 1 and p = m2 − 2α for ` = 2. Thus the chirality gradings are by

the signs of the corresponding magnetic charges.

It follows that the SU(2)×SU(2)-equivariant reduction of the twisted spinor represen-

tation of C`(R2n×CP 1×CP 1) decomposes as a Z2×Z2-graded bundle giving

∆V
SU(2)×SU(2) = ∆ 2n ⊗

(
∆++
V ⊕ ∆+−

V ⊕ ∆−+
V ⊕ ∆−−V

)
, (5.25)

where

∆++
V =

m−1⊕

i=0

m−2⊕

α=0

∆ iα and ∆+−
V =

m−1⊕

i=0

m2⊕

α=m+
2

∆ iα ,

∆−+
V =

m1⊕

i=m+
1

m−2⊕

α=0

∆ iα and ∆−−V =

m1⊕

i=m+
1

m2⊕

α=m+
2

∆ iα

(5.26)

with

∆ iα = V kiα ⊗ V |m1−2i| ⊗ V |m2−2α| and m±` =
⌊
m`±1

2

⌋
. (5.27)

The reduction (5.25) is valid for m1m2 odd, which we henceforth assume for brevity. When

m1 m2 is even, one should also couple eigenspaces of spinor harmonics in the appropriate

manner [18].
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The chirality bi-grading in (5.25) is by the signs of the magnetic charges. The multi-

plicative Z2-grading induced by this Z2×Z2-grading coincides with the grading into brane-

antibrane pairs infered from (5.7). The corresponding actions of the two Clifford multipli-

cations

µ
(1)
V : ∆−•V −→ ∆+ •

V and µ
(2)
V : ∆•−V −→ ∆•+

V (5.28)

are uniquely fixed on isotopical components in the same manner as in [18]. They give the

tachyon fields which are maps between branes of equal and opposite charge.

The equivalence between D-brane charges on M×CP 1×CP 1 and on M asserted by the

isomorphism (5.9) can now be understood heuristically through equivariant dimensional

reduction as follows. The graded Clifford connection (5.18) defines a class [D̂/ ] in the

analytic K-homology group Ka(M×CP 1×CP 1). Corresponding to [D̂/ ], we may define a

fermionic action functional on the space of sections Ψ of the bundle (5.20) by

SD :=

∫

M×CP 1×CP 1

d2n+4x
√
g Ψ† D̂/Ψ . (5.29)

Let us evaluate (5.29) on symmetric spinors given by

Ψ =

m1⊕

i=0

m2⊕

α=0

Ψiα with Ψiα =

(
ψ

(1) +
(m1−2i)

ψ
(1)−
(m1−2i)

)
⊗
(
ψ

(2) +
(m2−2α)

ψ
(2)−
(m2−2α)

)
(5.30)

with respect to the decomposition (5.20), where ψ
(`)±
(p) are sections of Lp±1 and Ψiα takes

values in ∆ 2n ⊗ V kiα with coefficient functions on M . After integration over CP 1×CP 1,
one easily computes analogously to [18] that the action functional (5.29) on symmetric
spinors becomes

SD = 16π2R2
1 R

2
2

∫

M

d2nx (5.31)

×
[ m−1∑

i=0

m−2∑

α=0

m1−2i−1∑

k1=0

m2−2α−1∑

k2=0

(
ψ

(1)−
(m1−2i) k1

ψ
(2)−
(m2−2α) k2

)†
D/
(
ψ

(1)−
(m1−2i) k1

ψ
(2)−
(m2−2α) k2

)

+

m−1∑

i=0

m2∑

α=m+
2

m1−2i−1∑

k1=0

|m2−2α|−1∑

k2=0

(
ψ

(1)−
(m1−2i) k1

ψ
(2) +
(m2−2α) k2

)†
D/
(
ψ

(1)−
(m1−2i) k1

ψ
(2) +
(m2−2α) k2

)

+

m1∑

i=m+
1

m−2∑

α=0

|m1−2i|−1∑

k1=0

m2−2α−1∑

k2=0

(
ψ

(1) +
(m1−2i) k1

ψ
(2)−
(m2−2α) k2

)†
D/
(
ψ

(1) +
(m1−2i) k1

ψ
(2)−
(m2−2α) k2

)

+

m1∑

i=m+
1

m2∑

α=m+
2

|m1−2i|−1∑

k1=0

|m2−2α|−1∑

k2=0

(
ψ

(1) +
(m1−2i) k1

ψ
(2) +
(m2−2α) k2

)†
D/
(
ψ

(1) +
(m1−2i) k1

ψ
(2) +
(m2−2α) k2

)
]
,

where D/ := γµDµ and the component functions ψ
(`)±
(p) k (x) on M with k = 0, 1, . . . , |p| − 1

form the irreducible representation V |p| ∼= C|p| of the group SU(2). The action func-

tional (5.31) corresponds to a K-homology class [D/ ] in Ka(M) twisted by appropriate

monopole contributions and SU(2)×SU(2)-modules. We shall now proceed to describe this

class more precisely.
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5.3 K-theory charges

Consider a holomorphic chain as in (3.24) and suppose that it is a complex at the same

time. Let us set E+ =
⊕

i even Eki0 and E− =
⊕

i odd Eki0 , and define

Φ :=
[
φ

(1)
(m,0) +

(
φ

(1)
(m,0)

)†]∣∣∣
E−

. (5.32)

With respect to this grading, the graded connection (5.32) is an odd map Φ : E− → E+.

Hence, the triple
[
E−, E+; Φ

]
represents the K-theory class of a brane-antibrane system

with tachyon field Φ [34]. The same construction would carry through for a higher-rank

quiver bundle of the form (2.12) if the latter was also a bi-complex, i.e. if both the horizontal

and vertical arrows defined complexes. In this case the commutativity conditions (3.11)

and (4.44) would allow us to lexicographically map the lattice onto a chain, and hence

make contact with the above well-known K-theory construction.

However, for generic monopole numbers m1 and m2 the quiver bundle (2.12) does not

have the requisite feature of a bi-complex due to the nilpotency properties (3.10). Following

the interpretation of section 5.1 above, we need to fold the holomorphic lattice into maps

between branes and antibranes [18, 34]. This accomplished by decomposing the quiver

module (2.6) with respect to the multiplicative Z2-grading induced by the Z2×Z2-grading

defined by the signs of the monopole charges m1−2i and m2−2α at each vertex of Q(m1 ,m2).

As a Z2-graded vector space we have

V = V + ⊕ V − with V + = V ++ ⊕ V −− and V − = V −+ ⊕ V +− , (5.33)

where the bi-graded components are given analogously to (5.26) as

V ++ =

m−1⊕

i=0

m−2⊕

α=0

V kiα and V −− =

m1⊕

i=m+
1

m2⊕

α=m+
2

V kiα ,

V +− =

m−1⊕

i=0

m2⊕

α=m+
2

V kiα and V −+ =

m1⊕

i=m+
1

m−2⊕

α=0

V kiα .

(5.34)

Using (3.6)–(3.11), we now introduce the operators

µ
(1)
(m1,m2) :=

(
φ

(1)
(m1 ,m2)

)m−1
and µ

(2)
(m1,m2) :=

(
φ

(2)
(m1 ,m2)

)m−2
(5.35)

constructed from the finite-energy Yang-Mills solutions of section 4.3. With respect to the

Z2×Z2-grading in (5.33), they are odd maps

µ
(1)
(m1,m2) : V −• ⊗H −→ V + • ⊗H with

(
µ

(1)
(m1,m2)

)2
= 0 ,

µ
(2)
(m1,m2) : V •− ⊗H −→ V •+ ⊗H with

(
µ

(2)
(m1,m2)

)2
= 0 (5.36)

which together form the requisite bi-complex of noncommutative tachyon fields between

branes and antibranes.
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Let µ
(1)
(m1 ,m2)iα and µ

(2)
(m1 ,m2)iα denote the restrictions of the operators (5.35) to the

isotopical component V kiα . These operators can be written in terms of bundle morphisms

as

µ
(1)
(m1 ,m2)iα = φ

(1)

i−m−1 α
· · ·φ(1)

iα and µ
(2)
(m1 ,m2)iα = φ

(2)

i α−m−2
· · · φ(2)

iα , (5.37)

where it is understood that φ
(1)
iα = 0 = φ

(2)
iα if i < 0 or α < 0. From (4.37) and (4.38)

it follows that the pair of operators (5.37) are respectively proportional to the Toeplitz

operators

T
(1)
iα := TN

i−m−1 −1α
T †Niα and T

(2)
iα := TN

i α−m−2 −1
T †Niα . (5.38)

The tachyon fields (5.35) are thus holomorphic maps between branes of equal and opposite

magnetic charges,

µ
(1)
(m1 ,m2)iα : V kiα ⊗H −→ V k

i−m−
1
−1α
⊗H ,

µ
(2)
(m1 ,m2)iα : V kiα ⊗H −→ V k

i α−m−
2
−1
⊗H , (5.39)

with the implicit understanding that V kiα = {0} when i < 0 or α < 0. Furthermore,

from (4.42) it follows that when the operators (5.37) are non-vanishing their kernels and

cokernels are the finite dimensional vector spaces given by

ker
(
µ

(1)
(m1 ,m2)iα

)
= imPNiα and ker

(
µ

(1)
(m1,m2)iα

)†
= imPN

i−m−
1
−1α

,

ker
(
µ

(2)
(m1 ,m2)iα

)
= imPNiα and ker

(
µ

(2)
(m1,m2)iα

)†
= imPN

i α−m−
2
−1

(5.40)

with Niα := 0 for i < 0 or α < 0.

The operators µ
(1)
(m1,m2) and µ

(2)
(m1,m2) are k×k matrices whose sum can be written as

µ
(1)
(m1,m2) ⊕ µ

(2)
(m1,m2) =




0 µ
(1)
(m1,m2)−+ µ

(2)
(m1,m2)+− 0

0 0 0 µ
(2)
(m1,m2)−−

0 0 0 µ
(1)
(m1,m2)−−

0 0 0 0




(5.41)

on V ⊗ H with V = V ++ ⊕ V −+ ⊕ V +− ⊕ V −−, where µ
(1)
(m1,m2)−± := µ

(1)
(m1 ,m2)|V −±⊗H

and µ
(2)
(m1 ,m2)±− := µ

(2)
(m1 ,m2)|V ±−⊗H. This matrix presentation corresponds to the bundle

diagram

V −+ ⊗H
µ

(1)
(m1,m2)−+−−−−−−−−→ V ++ ⊗H

µ
(2)
(m1,m2)−−

x
xµ(2)

(m1,m2)+−

V −− ⊗H −−−−−−−−→
µ

(1)
(m1,m2)−−

V +− ⊗H .

(5.42)
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Via an appropriate change of basis of the Hilbert space V ⊗H, from (5.42) it follows that

the operator (5.41) can be rewritten as

T (m1 ,m2) :=




0 0 µ
(1)
(m1 ,m2)−+ µ

(2)
(m1 ,m2)+−

0 0
(
µ

(2)
(m1,m2)−−

)† (
µ

(1)
(m1,m2)−−

)†

0 0 0 0

0 0 0 0




(5.43)

on V ⊗H with V = V ++ ⊕V −− ⊕V −+ ⊕ V +−.

The important ingredients in this construction are the holomorphic relations R(m1,m2)

of the quiver Q(m1,m2) which enable us to commute the graded connections as in (3.11),

along with the non-holomorphic relations (4.44). Together they imply that, with respect

to the Z2-grading in (5.33), the operator (5.43) is an odd map

T (m1,m2) : V − ⊗H −→ V + ⊗H with
(
T (m1 ,m2)

)2
= 0 (5.44)

and hence it produces the appropriate two-term complex representing the brane-antibrane

system with noncommutative tachyon field (5.43). Again, when acting on isotopical com-

ponents the operator T (m1 ,m2)iα relates a given brane to the two possible antibranes of

equal but opposite charge as

T (m1,m2)iα

∣∣∣
V −+

: V kiα ⊗H −→
(
V k

i−m−1 −1α
⊗H

)
⊕
(
V k

i α+m−2 +1
⊗H

)
,

T (m1,m2)iα

∣∣∣
V +−

: V kiα ⊗H −→
(
V k

i α−m−
2
−1
⊗H

)
⊕
(
V k

i+m−
1

+1α
⊗H

)
. (5.45)

From (5.40) it then follows that the operators (5.45) have kernels and cokernels of finite
dimensions given by

dim ker
(
T (m1,m2)iα

)†∣∣∣
V ++

= dim
[
ker
(
µ

(1)
(m1,m2)iα

)
∩ ker

(
µ

(2)
(m1,m2)iα

)†]
= Ni−m−1 −1α−m−2 −1 ,

dim ker
(
T (m1,m2)iα

)†∣∣∣
V −−

= dim
[
ker
(
µ

(1)
(m1,m2)iα

)†
∩ ker

(
µ

(2)
(m1,m2)iα

)]
= Niα ,

dim ker
(
T (m1,m2)iα

)∣∣∣
V −+

= dim
[
ker
(
µ

(1)
(m1,m2)iα

)†
∩ ker

(
µ

(2)
(m1,m2)iα

)†]
= Ni α−m−2 −1 ,

dim ker
(
T (m1,m2)iα

)∣∣∣
V +−

= dim
[
ker
(
µ

(1)
(m1,m2)iα

)
∩ ker

(
µ

(2)
(m1,m2)iα

)]
= Ni−m−1 −1α . (5.46)

To incorporate the twistings by the magnetic monopole bundles, we use the ABS

construction of section 5.2 above to modify the tachyon field (5.43) to the operator

T (m1 ,m2) := T (m1 ,m2) ⊗ 1 : ∆−V ⊗H −→ ∆+
V ⊗H (5.47)

where ∆+
V := ∆++

V ⊕ ∆−−V and ∆−V := ∆−+
V ⊕ ∆+−

V . The corresponding tachyon oper-

ators (5.35) then define noncommutative versions of the Clifford multiplications (5.28).
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Since dimV |p| = |p|, from (5.26), (5.27) and (5.46) it follows that the index of the tachyon

field (5.47) is given by

index
(T (m1 ,m2)

)
= dim ker

(T (m1,m2)

)
− dim ker

(T (m1,m2)

)†

=

m1∑

i=m+
1

m2∑

α=m+
2

|m1 − 2i| |m2 − 2α|

×
[(
Ni α−m−2 −1 +Ni−m−1 −1α

)
−
(
Ni−m−1 −1α−m−2 −1 +Niα

)]

= −Q . (5.48)

The virtual Euler class generated by the cohomology of the complex (5.44) is the analytic

K-homology class in Ka(R2n) of the configuration of D-branes represented by the quiver

bundle (2.12). The formula (5.48) then asserts that the K-theory charge of the noncommu-

tative quiver vortex configuration constructed in section 4.3, i.e. the virtual dimension of

this index class, coincides with the Yang-Mills instanton charge (5.5)–(5.7) on R2n
θ ×S2×S2.

The corresponding geometric worldvolume description in terms of topological K-cycles may

now also be worked out in exactly the same way as in [18]. It relies crucially on the equiv-

ariant excision theorem (5.9) which asserts the equivalence of the brane configurations on

M×CP 1×CP 1 and on M .

5.4 D-brane categories

The K-theory construction in section 5.3 above of the brane configuration correspond-

ing to the quiver bundle (2.12) is somewhat primitive in that it only builds the system

at the level of topological charges. In particular, it relies crucially on the equivariant

excision theorem (5.9). We can get a more detailed picture of the dynamics of these

D-branes, and in particular how the original configuration folds itself into branes and an-

tibranes, by modelling our instanton solutions in the category of quiver representations of

(Q(m1 ,m2) , R(m1,m2)). The ensuing homological algebra of this category will then exemplify

the roles of the SU(2)×SU(2)-modules and of the relations of the quiver in computing the

equivariant charges. Our previous approach based on intersection pairings at the K-theory

level misses certain quantitative aspects of the brane configurations corresponding to the

quiver bundle (2.12), while the category of quiver representations provides a rigorous and

complete framework for understanding these systems [10].

Let us fix a vertex (m1 − 2i,m2 − 2α) ∈ Q
(0)
(m1,m2) of the quiver and consider the

distinguished representations P iα and L iα introduced in sections 3.1 and 4.4 respectively.

Then one has a canonical projective resolution given by the exact sequence [21]

0 −→ P i−1α−1 −→ P i−1α ⊕P i α−1 −→ P iα −→ L iα −→ 0 . (5.49)

The first term corresponds to the independent relations of the quiver which are indexed by

(i, α) with paths starting at (i, α) and ending at (i−1, α−1). The second sum corresponds

to the arrows which start at node (i, α). Since there are no “relations among the relations”,

there are no further non-trivial modules to the far left of the exact sequence (5.49).
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Consider now the module (4.46) generated by a fixed noncommutative instanton so-

lution. From section 4.5 it follows that this quiver representation specifies the loci of the

D-branes in R2n, and since all the moduli of our solutions come from the noncommutative

quiver solitons it will suffice to recover the appropriate topological charge. Taking the

tensor product of (5.49) with the components ker T †Niα of T and summing over all nodes

(i, α) of the quiver Q(m1 ,m2) gives the projective Ringel resolution of T as

0 −→
m1⊕

i=0

m2⊕

α=0

P i−1α−1 ⊗ kerT †Niα −→
m1⊕

i=0

m2⊕

α=0

(
P i−1α ⊕P i α−1

)
⊗ kerT †Niα −→

−→
m1⊕

i=0

m2⊕

α=0

P iα ⊗ ker T †Niα −→ T −→ 0.(5.50)

Let

W =

m1⊕

i=0

m2⊕

α=0

W iα with ~kW =
(
wiα
)i=0,1,...,m1

α=0,1,...,m2
(5.51)

be any other representation of (Q(m1 ,m2) , R(m1,m2)). It will be fixed below to correctly

incorporate the monopole fields at the vertices of the quiver. Applying the contravari-

ant functor Hom(− , W ) to the projective resolution (5.50) using (3.2) then induces the

complex

0 −→ Hom
(
T , W

)
−→

m1⊕

i=0

m2⊕

α=0

Hom
(
ker T †Niα , W iα

)
−→

−→
m1⊕

i=0

m2⊕

α=0

(
Hom

(
ker T †Niα , W i−1α

)
⊕Hom

(
kerT †Niα , W i α−1

))
−→

−→
m1⊕

i=0

m2⊕

α=0

Hom
(
ker T †Niα , W i−1α−1

)
−→ Ext2

(
T , W

)
−→ 0 . (5.52)

The group Extp( T , W ) is defined to be the cohomology of the complex (5.52) in the

p-th position. One has Ext0( T , W ) = Hom( T , W ) corresponding to the vertices of the

quiver Q(m1 ,m2). This group classifies morphisms f : T → W of quiver representations

as in section 3.1 and represents the partial gauge symmetries of the combined system of

D-branes and magnetic monopoles. The group Ext1( T , W ) = Ext( T , W ) corresponds

to the arrows of the quiver and classifies the Q(m1 ,m2)-modules U which can be defined by

short exact sequences

0 −→ T
f
−→ U

g
−→ W −→ 0 . (5.53)

We may regard the module U as a deformation of T ⊕ W which simulates the attaching

of magnetic monopoles to the D-branes to form a bound state U . The arrows of (5.53) are

given by morphisms f ∈ Hom( T , U ) and g ∈ Hom(U , W ), reflecting the fact that T and

W are constituents of U arising from partial gauge symmetries. Finally, the non-trivial

Ext2 group accounts for the relations R(m1,m2), while Extp = 0 for all p ≥ 3 since there are

no relations among our relations.
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We now define the charge of the given configuration of noncommutative instantons

relative to the (Q(m1,m2) , R(m1,m2))-module (5.51) through the relative Euler character

χ
(
T , W

)
:=
∑

p≥0

(−1)p dim Extp
(
T , W

)
. (5.54)

This coincides with the Ringel form on the representation ring RA(m1,m2)
of the quiver

Q(m1 ,m2). Using (5.52) we may compute the Euler form as

χ
(
T , W

)
= dim Hom

(
T , W

)
+ dim Ext2

(
T , W

)
− dim Ext

(
T , W

)

=

m1∑

i=0

m2∑

α=0

dim Hom
(
kerT †Niα , W iα

)
+

m1∑

i=0

m2∑

α=0

dim Hom
(
kerT †Niα , W i−1α−1

)

−
m1∑

i=0

m2∑

α=0

(
dim Hom

(
kerT †Niα , W i−1α

)
+ dim Hom

(
kerT †Niα , W i α−1

))

=

m1∑

i=0

m2∑

α=0

Niα
(
wiα + wi−1 α−1 − wi−1 α − wi α−1

)
. (5.55)

Following [18], we choose the coupling representation (5.51) to the brane configura-

tion of the quiver bundle (2.12) to correctly incorporate the magnetic monopole charges

through the appropriate folding of SU(2)×SU(2)-representations appearing in the ABS

construction (5.25)–(5.27). We define a non-decreasing sequence W iα ⊆W jβ, i ≤ j, α ≤ β
of representations as we move along the quiver of constituent D-branes such that the

SU(2)×SU(2)-module W iα gives an extension of the monopole fields carried by the ele-

mentary brane state at node (i, α). Thus we take

W iα =

i−1⊕

j=0

α−1⊕

β=0

V |m1−2j| ⊗ V |m2−2β| . (5.56)

As an element of the representation ring RA(m1,m2)
of the quiver Q(m1 ,m2), we view the

module (5.56) as a graded sum of representations with respect to the signs of the monopole

charges such that its virtual dimension is given by

wiα = dim
[
W iα

]vir

=

i−1∑

j=0

α−1∑

β=0

(m1 − 2j) (m2 − 2β) = i α (m1 − i+ 1) (m2 − α+ 1) . (5.57)

One easily checks that the integers (5.57) obey the inhomogeneous recursion relation

wiα + wi−1α−1 − wi−1α − wi α−1 = (m1 − 2i) (m2 − 2α) . (5.58)

Consequently, the Euler-Ringel form (5.55) in this case becomes

χ
(
T , W

)
=

m1∑

i=0

m2∑

α=0

Niα (m1 − 2i) (m2 − 2α) = Q , (5.59)

reproducing again the instanton charge (5.5). The equivalence between the Euler charac-

teristic (5.54) and the K-theory charge of section 5.3 above is a consequence of the index

theorem applied to the complex generating the cohomology groups Hp(R2n
θ , T ⊗W∨⊗H).
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